Multimodal multi-instance learning for long-term ECG classification

计算机科学 深度学习 期限(时间) 卷积神经网络 人工智能 特征(语言学) 联营 心跳 特征学习 机器学习 领域(数学) 模态(人机交互) 人工神经网络 模式识别(心理学) 模式 特征提取 物理 量子力学 社会科学 哲学 语言学 计算机安全 数学 社会学 纯数学
作者
Haozhan Han,Cheng Lian,Zhigang Zeng,Bingrong Xu,Junbin Zang,Chenyang Xue
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:270: 110555-110555 被引量:31
标识
DOI:10.1016/j.knosys.2023.110555
摘要

Recently, deep learning-based models have been widely used for electrocardiogram (ECG) classification tasks. Most ECG signals are long-term time series that contain a large number of sample points. However, existing deep learning-based models resize or crop the original long-term ECG signal due to the limitation of input size and hardware, which results in information loss. To address this issue, a multimodal multi-instance learning neural network (MAMIL) is proposed for long-term ECG classification. The proposed MAMIL has three major components. First, the original ECG signal and Gramian Angular Field (GAF) image converted from the ECG signal are utilized as multimodal inputs, which enables the model to learn complementary information between different modalities. Second, multi-instance learning (MIL) is introduced to avoid information loss. Each long-term ECG signal and GAF image are treated as bags, and each heartbeat from a long-term ECG signal and each patch from a GAF image are treated as instances. Convolutional neural networks (CNNs) are utilized to extract instance features from different modalities. Third, a novel attention mechanism-based feature fusion method is proposed to aggregate the instance features from multiple modalities to obtain the bag feature for final classification. Our feature fusion method adopts pooling to obtain positive instances, which can effectively eliminate redundant information and achieve low computational complexity. The proposed MAMIL is evaluated on both intrapatient and interpatient patterns of two commonly used ECG datasets. Experimental results show that our model not only outperforms common deep learning-based models, but also outperforms previous MIL-based models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
华清引发布了新的文献求助30
1秒前
jijahui发布了新的文献求助10
1秒前
2秒前
sweetbearm应助通~采纳,获得10
2秒前
2秒前
2秒前
小田心发布了新的文献求助10
2秒前
甜筒发布了新的文献求助10
3秒前
Steve发布了新的文献求助10
4秒前
mjc完成签到 ,获得积分10
4秒前
研一小刘发布了新的文献求助10
4秒前
4秒前
芳芳发布了新的文献求助10
4秒前
宵宵完成签到,获得积分10
4秒前
斯文黎云发布了新的文献求助10
5秒前
6秒前
科研通AI5应助Yiiimmmwang采纳,获得10
6秒前
遊星完成签到,获得积分10
6秒前
可靠嘉懿完成签到 ,获得积分10
7秒前
旅顺口老李完成签到 ,获得积分10
7秒前
leon发布了新的文献求助30
7秒前
lalala发布了新的文献求助10
7秒前
dingdong发布了新的文献求助10
7秒前
辛勤的仰发布了新的文献求助10
7秒前
科研通AI2S应助白华苍松采纳,获得10
7秒前
Kiyotaka发布了新的文献求助30
7秒前
xiaozhenA发布了新的文献求助10
7秒前
Steve完成签到,获得积分10
8秒前
p8793428发布了新的文献求助30
8秒前
科研通AI2S应助zrk采纳,获得10
8秒前
8秒前
9秒前
9秒前
科研通AI2S应助lkc采纳,获得10
9秒前
雾见春完成签到,获得积分10
10秒前
10秒前
10秒前
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794