Multimodal multi-instance learning for long-term ECG classification

计算机科学 深度学习 期限(时间) 卷积神经网络 人工智能 特征(语言学) 联营 心跳 特征学习 机器学习 领域(数学) 模态(人机交互) 人工神经网络 模式识别(心理学) 模式 特征提取 物理 量子力学 社会科学 哲学 语言学 计算机安全 数学 社会学 纯数学
作者
Haozhan Han,Cheng Lian,Zhigang Zeng,Bingrong Xu,Junbin Zang,Chenyang Xue
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:270: 110555-110555 被引量:40
标识
DOI:10.1016/j.knosys.2023.110555
摘要

Recently, deep learning-based models have been widely used for electrocardiogram (ECG) classification tasks. Most ECG signals are long-term time series that contain a large number of sample points. However, existing deep learning-based models resize or crop the original long-term ECG signal due to the limitation of input size and hardware, which results in information loss. To address this issue, a multimodal multi-instance learning neural network (MAMIL) is proposed for long-term ECG classification. The proposed MAMIL has three major components. First, the original ECG signal and Gramian Angular Field (GAF) image converted from the ECG signal are utilized as multimodal inputs, which enables the model to learn complementary information between different modalities. Second, multi-instance learning (MIL) is introduced to avoid information loss. Each long-term ECG signal and GAF image are treated as bags, and each heartbeat from a long-term ECG signal and each patch from a GAF image are treated as instances. Convolutional neural networks (CNNs) are utilized to extract instance features from different modalities. Third, a novel attention mechanism-based feature fusion method is proposed to aggregate the instance features from multiple modalities to obtain the bag feature for final classification. Our feature fusion method adopts pooling to obtain positive instances, which can effectively eliminate redundant information and achieve low computational complexity. The proposed MAMIL is evaluated on both intrapatient and interpatient patterns of two commonly used ECG datasets. Experimental results show that our model not only outperforms common deep learning-based models, but also outperforms previous MIL-based models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
jh发布了新的文献求助10
刚刚
完美世界应助与非采纳,获得10
1秒前
七点半发布了新的文献求助10
1秒前
跳跃的凌文完成签到 ,获得积分10
1秒前
领导范儿应助桶装乐事采纳,获得10
1秒前
慕青应助Estrella采纳,获得10
1秒前
2秒前
一一应助阿峰采纳,获得10
2秒前
3秒前
3秒前
lj完成签到,获得积分10
3秒前
3秒前
BowieHuang应助566采纳,获得10
3秒前
大模型应助迷你的醉薇采纳,获得10
4秒前
jjjincc完成签到,获得积分10
5秒前
领导范儿应助Honahlee采纳,获得10
5秒前
Harssi发布了新的文献求助10
5秒前
6秒前
可爱的函函应助文房四宝采纳,获得10
6秒前
Ovo完成签到,获得积分20
6秒前
6秒前
zkygmu发布了新的文献求助10
6秒前
lio发布了新的文献求助50
6秒前
怕孤单的丁真完成签到,获得积分10
6秒前
7秒前
8秒前
苹果涵蕾发布了新的文献求助10
8秒前
大力的问蕊完成签到,获得积分10
8秒前
11秒前
破碎时间完成签到 ,获得积分10
11秒前
阔达如松发布了新的文献求助10
11秒前
Orange应助默默采纳,获得10
11秒前
11秒前
11秒前
GDN完成签到 ,获得积分10
11秒前
哥哥完成签到,获得积分10
12秒前
hwyk发布了新的文献求助10
13秒前
13秒前
蒋若风发布了新的文献求助10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608407
求助须知:如何正确求助?哪些是违规求助? 4693040
关于积分的说明 14876313
捐赠科研通 4717445
什么是DOI,文献DOI怎么找? 2544206
邀请新用户注册赠送积分活动 1509230
关于科研通互助平台的介绍 1472836