Multimodal multi-instance learning for long-term ECG classification

计算机科学 深度学习 期限(时间) 卷积神经网络 人工智能 特征(语言学) 联营 心跳 特征学习 机器学习 领域(数学) 模态(人机交互) 人工神经网络 模式识别(心理学) 模式 特征提取 物理 量子力学 社会科学 哲学 语言学 计算机安全 数学 社会学 纯数学
作者
Haozhan Han,Cheng Lian,Zhigang Zeng,Bingrong Xu,Junbin Zang,Chenyang Xue
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:270: 110555-110555 被引量:40
标识
DOI:10.1016/j.knosys.2023.110555
摘要

Recently, deep learning-based models have been widely used for electrocardiogram (ECG) classification tasks. Most ECG signals are long-term time series that contain a large number of sample points. However, existing deep learning-based models resize or crop the original long-term ECG signal due to the limitation of input size and hardware, which results in information loss. To address this issue, a multimodal multi-instance learning neural network (MAMIL) is proposed for long-term ECG classification. The proposed MAMIL has three major components. First, the original ECG signal and Gramian Angular Field (GAF) image converted from the ECG signal are utilized as multimodal inputs, which enables the model to learn complementary information between different modalities. Second, multi-instance learning (MIL) is introduced to avoid information loss. Each long-term ECG signal and GAF image are treated as bags, and each heartbeat from a long-term ECG signal and each patch from a GAF image are treated as instances. Convolutional neural networks (CNNs) are utilized to extract instance features from different modalities. Third, a novel attention mechanism-based feature fusion method is proposed to aggregate the instance features from multiple modalities to obtain the bag feature for final classification. Our feature fusion method adopts pooling to obtain positive instances, which can effectively eliminate redundant information and achieve low computational complexity. The proposed MAMIL is evaluated on both intrapatient and interpatient patterns of two commonly used ECG datasets. Experimental results show that our model not only outperforms common deep learning-based models, but also outperforms previous MIL-based models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
郁金香发布了新的文献求助10
刚刚
xiaoming完成签到 ,获得积分10
1秒前
学术蝗虫完成签到,获得积分10
1秒前
sayso完成签到,获得积分10
1秒前
Orange应助123采纳,获得10
2秒前
FashionBoy应助zyy采纳,获得10
3秒前
3秒前
3秒前
3秒前
爱吃米线应助单薄雅阳采纳,获得20
5秒前
134完成签到,获得积分10
6秒前
6秒前
awenger发布了新的文献求助10
6秒前
porkkk发布了新的文献求助10
6秒前
受伤冰菱完成签到,获得积分10
6秒前
8秒前
李琦完成签到 ,获得积分10
9秒前
悦耳白开水完成签到,获得积分10
10秒前
10秒前
10秒前
李成昊完成签到,获得积分10
10秒前
11秒前
12秒前
12秒前
hh发布了新的文献求助10
13秒前
may完成签到,获得积分10
13秒前
呆头鹅完成签到 ,获得积分10
13秒前
wenlon发布了新的文献求助10
13秒前
科研通AI6应助hahaha采纳,获得10
13秒前
13秒前
蹦蹦又跳跳完成签到,获得积分10
14秒前
地西泮完成签到,获得积分10
14秒前
xiahua发布了新的文献求助10
14秒前
14秒前
14秒前
孤独士晋完成签到,获得积分10
15秒前
黄茹发布了新的文献求助200
15秒前
123发布了新的文献求助10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5653193
求助须知:如何正确求助?哪些是违规求助? 4789427
关于积分的说明 15063229
捐赠科研通 4811788
什么是DOI,文献DOI怎么找? 2574069
邀请新用户注册赠送积分活动 1529802
关于科研通互助平台的介绍 1488465