Multimodal multi-instance learning for long-term ECG classification

计算机科学 深度学习 期限(时间) 卷积神经网络 人工智能 特征(语言学) 联营 心跳 特征学习 机器学习 领域(数学) 模态(人机交互) 人工神经网络 模式识别(心理学) 模式 特征提取 物理 量子力学 社会科学 哲学 语言学 计算机安全 数学 社会学 纯数学
作者
Haozhan Han,Cheng Lian,Zhigang Zeng,Bingrong Xu,Junbin Zang,Chenyang Xue
出处
期刊:Knowledge Based Systems [Elsevier BV]
卷期号:270: 110555-110555 被引量:35
标识
DOI:10.1016/j.knosys.2023.110555
摘要

Recently, deep learning-based models have been widely used for electrocardiogram (ECG) classification tasks. Most ECG signals are long-term time series that contain a large number of sample points. However, existing deep learning-based models resize or crop the original long-term ECG signal due to the limitation of input size and hardware, which results in information loss. To address this issue, a multimodal multi-instance learning neural network (MAMIL) is proposed for long-term ECG classification. The proposed MAMIL has three major components. First, the original ECG signal and Gramian Angular Field (GAF) image converted from the ECG signal are utilized as multimodal inputs, which enables the model to learn complementary information between different modalities. Second, multi-instance learning (MIL) is introduced to avoid information loss. Each long-term ECG signal and GAF image are treated as bags, and each heartbeat from a long-term ECG signal and each patch from a GAF image are treated as instances. Convolutional neural networks (CNNs) are utilized to extract instance features from different modalities. Third, a novel attention mechanism-based feature fusion method is proposed to aggregate the instance features from multiple modalities to obtain the bag feature for final classification. Our feature fusion method adopts pooling to obtain positive instances, which can effectively eliminate redundant information and achieve low computational complexity. The proposed MAMIL is evaluated on both intrapatient and interpatient patterns of two commonly used ECG datasets. Experimental results show that our model not only outperforms common deep learning-based models, but also outperforms previous MIL-based models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
1秒前
1秒前
阿斯师大发布了新的文献求助20
1秒前
1秒前
霜风款冬发布了新的文献求助10
2秒前
2秒前
李治海完成签到,获得积分10
2秒前
奔波霸完成签到,获得积分10
3秒前
3秒前
科研通AI2S应助郭晓琦采纳,获得10
3秒前
夙夙完成签到,获得积分10
4秒前
孙刚发布了新的文献求助10
4秒前
quhayley发布了新的文献求助30
4秒前
晚灯君发布了新的文献求助10
5秒前
demian发布了新的文献求助10
6秒前
6秒前
6秒前
Jasper应助hp571采纳,获得10
6秒前
6秒前
天天快乐应助李治海采纳,获得10
7秒前
可达燊完成签到,获得积分10
7秒前
今后应助小怪兽采纳,获得10
8秒前
小晟完成签到,获得积分10
8秒前
小鹿呀完成签到,获得积分10
8秒前
Connie完成签到,获得积分10
8秒前
uu发布了新的文献求助10
8秒前
一只鱼的故事完成签到,获得积分10
9秒前
流星完成签到,获得积分10
10秒前
liyizhe完成签到 ,获得积分10
10秒前
10秒前
徐风年完成签到,获得积分10
11秒前
猕猴桃发布了新的文献求助30
12秒前
12秒前
刘源发布了新的文献求助10
12秒前
13秒前
glanceofwind完成签到 ,获得积分10
13秒前
可达燊发布了新的文献求助50
13秒前
Akim应助kk采纳,获得10
13秒前
传奇3应助爱听歌的寄云采纳,获得10
14秒前
xW12123完成签到,获得积分10
14秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3987021
求助须知:如何正确求助?哪些是违规求助? 3529365
关于积分的说明 11244629
捐赠科研通 3267729
什么是DOI,文献DOI怎么找? 1803932
邀请新用户注册赠送积分活动 881223
科研通“疑难数据库(出版商)”最低求助积分说明 808635