MFA-Net: Multiple Feature Association Network for medical image segmentation

特征(语言学) 人工智能 计算机科学 编码器 分割 模式识别(心理学) 深度学习 图像分割 计算机视觉 语言学 操作系统 哲学
作者
Zhixun Li,Nan Zhang,Huiling Gong,Ruiyun Qiu,Wei Zhang
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:158: 106834-106834 被引量:5
标识
DOI:10.1016/j.compbiomed.2023.106834
摘要

Medical image segmentation plays a crucial role in computer-aided diagnosis. However, due to the large variability of medical images, accurate segmentation is a highly challenging task. In this paper, we present a novel medical image segmentation network named the Multiple Feature Association Network (MFA-Net), which is based on deep learning techniques. The MFA-Net utilizes an encoder–decoder architecture with skip connections as its backbone network, and a parallelly dilated convolutions arrangement (PDCA) module is integrated between the encoder and the decoder to capture more representative deep features. Furthermore, a multi-scale feature restructuring module (MFRM) is introduced to restructure and fuse the deep features of the encoder. To enhance global attention perception, the proposed global attention stacking (GAS) modules are cascaded on the decoder. The proposed MFA-Net leverages novel global attention mechanisms to improve the segmentation performance at different feature scales. We evaluated our MFA-Net on four segmentation tasks, including lesions in intestinal polyp, liver tumor, prostate cancer, and skin lesion. Our experimental results and ablation study demonstrate that the proposed MFA-Net outperforms state-of-the-art methods in terms of global positioning and local edge recognition.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
LULU发布了新的文献求助10
1秒前
LL发布了新的文献求助10
2秒前
2秒前
田様应助布丁采纳,获得30
3秒前
3秒前
鸣笛应助科研通管家采纳,获得100
3秒前
Yu发布了新的文献求助10
4秒前
斯文败类应助科研通管家采纳,获得10
4秒前
田様应助科研通管家采纳,获得10
4秒前
痛苦啊应助科研通管家采纳,获得10
4秒前
Lucas应助科研通管家采纳,获得10
4秒前
汉堡包应助科研通管家采纳,获得10
4秒前
4秒前
清爽妙竹应助科研通管家采纳,获得10
4秒前
SciGPT应助科研通管家采纳,获得10
4秒前
wl1700发布了新的文献求助10
5秒前
JamesPei应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
中单阿飞发布了新的文献求助10
5秒前
ccc完成签到 ,获得积分10
5秒前
hh发布了新的文献求助10
6秒前
LULU完成签到,获得积分10
7秒前
李爱国应助大侦探皮卡丘采纳,获得10
8秒前
脑洞疼应助聪明水之采纳,获得10
9秒前
中单阿飞完成签到,获得积分10
10秒前
无情的君浩应助Marciu33采纳,获得10
10秒前
缓慢思枫完成签到,获得积分10
10秒前
niulugai发布了新的文献求助10
11秒前
活力的小猫咪完成签到 ,获得积分10
12秒前
爆米花应助WYT采纳,获得10
12秒前
郝冰雁发布了新的文献求助10
12秒前
852应助圣诞节前的一天采纳,获得10
14秒前
23秒前
24秒前
成阳完成签到,获得积分10
26秒前
27秒前
搜集达人应助StonesKing采纳,获得10
28秒前
xiaobai发布了新的文献求助10
29秒前
liusui完成签到 ,获得积分10
29秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3953141
求助须知:如何正确求助?哪些是违规求助? 3498499
关于积分的说明 11092224
捐赠科研通 3229097
什么是DOI,文献DOI怎么找? 1785211
邀请新用户注册赠送积分活动 869255
科研通“疑难数据库(出版商)”最低求助积分说明 801415