Adversarial Heterogeneous Graph Neural Network for Robust Recommendation

计算机科学 对抗制 推荐系统 图形 稳健性(进化) 机器学习 人工智能 理论计算机科学 人工神经网络 数据挖掘 生物化学 化学 基因
作者
Lei Sang,Min Xu,Shengsheng Qian,Xindong Wu
出处
期刊:IEEE Transactions on Computational Social Systems [Institute of Electrical and Electronics Engineers]
卷期号:10 (5): 2660-2671 被引量:5
标识
DOI:10.1109/tcss.2023.3268683
摘要

Recommendation systems play a vital role in identifying the hidden interactions between users and items in online social networks. Recently, graph neural networks (GNNs) have exhibited significant performance gains by modeling the information propagation process in graph-structured data for a recommendation. However, existing GNN-based methods do not have broad applicability to heterogeneous graphs that integrate auxiliary data with diverse types. Moreover, graph structures are susceptible to noise and even unnoticed malicious perturbations, as perturbations from connected nodes can create cumulative effects on a target node in the graph. To enhance the robustness and generalization of GNN-based recommendations, we propose a new optimization model named Adversarial Heterogeneous Graph Neural Network for RECommendation (AHGNNRec). First, AHGNNRec learns user and item embeddings by exploring the distinct contributions of various types of interactions between users and items using a hierarchical heterogeneous graph neural network (HGNN). Second, to produce more robust embeddings for recommendations, we employ the adversarial training (AT) method to optimize the HGNN layers. AT is a min-max optimization training process where the generated adversarial fake nodes from normal nodes with intentional perturbations try to maximally deteriorate the recommendation performance. Following this, we learn about these adversarial user or item nodes by minimizing the impact of an additional regularization term for the recommendation. The experimental outcomes on two real-world benchmark datasets demonstrate the effectiveness of AHGNNRec.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
邢夏之完成签到,获得积分10
1秒前
安静严青完成签到 ,获得积分10
1秒前
小蘑菇应助花小胖采纳,获得10
1秒前
Stanfuny完成签到,获得积分10
2秒前
3秒前
xzh完成签到 ,获得积分10
3秒前
Singularity完成签到,获得积分0
4秒前
鱼鱼完成签到 ,获得积分10
5秒前
安安的小板栗完成签到,获得积分10
5秒前
冷静的无颜完成签到 ,获得积分10
6秒前
修好世界完成签到,获得积分10
6秒前
CR完成签到 ,获得积分10
7秒前
调皮的完成签到,获得积分10
9秒前
北望发布了新的文献求助10
9秒前
冷傲芷雪完成签到,获得积分10
10秒前
11秒前
Yvan完成签到,获得积分10
11秒前
双青豆完成签到 ,获得积分10
14秒前
大妙妙完成签到 ,获得积分10
14秒前
shyの煜完成签到 ,获得积分10
17秒前
拓跋涵易完成签到,获得积分10
18秒前
20秒前
嘻嘻哈哈完成签到 ,获得积分10
20秒前
Tohka完成签到 ,获得积分10
22秒前
北望完成签到,获得积分20
22秒前
苏苏诺诺2023完成签到,获得积分10
22秒前
cdercder应助H_C采纳,获得10
24秒前
xinxiangshicheng完成签到 ,获得积分10
24秒前
贰鸟应助chen采纳,获得30
24秒前
tesla完成签到,获得积分10
25秒前
12345完成签到 ,获得积分10
25秒前
铂铑钯钌完成签到,获得积分10
26秒前
27秒前
lixiangrui110完成签到,获得积分10
29秒前
Hello应助尊敬秋双采纳,获得10
30秒前
微笑襄完成签到 ,获得积分10
30秒前
lixoii完成签到 ,获得积分10
33秒前
hao发布了新的文献求助10
34秒前
biubiuu完成签到,获得积分10
34秒前
duoduozs完成签到,获得积分10
35秒前
高分求助中
All the Birds of the World 3000
Weirder than Sci-fi: Speculative Practice in Art and Finance 960
IZELTABART TAPATANSINE 500
Introduction to Comparative Public Administration: Administrative Systems and Reforms in Europe: Second Edition 2nd Edition 300
Spontaneous closure of a dural arteriovenous malformation 300
GNSS Applications in Earth and Space Observations 300
Not Equal : Towards an International Law of Finance 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3725514
求助须知:如何正确求助?哪些是违规求助? 3270437
关于积分的说明 9965810
捐赠科研通 2985453
什么是DOI,文献DOI怎么找? 1638024
邀请新用户注册赠送积分活动 777792
科研通“疑难数据库(出版商)”最低求助积分说明 747261