Research on smart contract vulnerability detection method based on domain features of solidity contracts and attention mechanism

计算机科学 智能合约 计算机安全 人工智能 机器学习 块链
作者
Changjing Wang,Huiwen Jiang,Yuxin Wang,Qing Huang,Zhengkang Zuo
出处
期刊:Journal of Intelligent and Fuzzy Systems [IOS Press]
卷期号:45 (1): 1513-1525 被引量:2
标识
DOI:10.3233/jifs-224489
摘要

The smart contract, a self-executing program on the blockchain, is key to programmable finance. However, the rise of smart contract use has also led to an increase in vulnerabilities that attract illegal activity from hackers. Traditional manual approaches for vulnerability detection, relying on domain experts, have limitations such as low automation and weak generalization. In this paper, we propose a deep learning approach that leverages domain-specific features and an attention mechanism to accurately detect vulnerabilities in smart contracts. Our approach reduces the reliance on manual input and enhances generalization by continuously learning code patterns of vulnerabilities, specifically detecting various types of vulnerabilities such as reentrancy, integer overflow, forced Ether injection, unchecked return value, denial of service, access control, short address attack, tx.origin, call stack overflow, timestamp dependency, random number dependency, and transaction order dependency vulnerabilities. In order to extract semantic information, we present a semantic distillation approach for detecting smart contract vulnerabilities. This approach involves using a syntax parser, Slither, to segment the code into smaller slices and word embedding to create a matrix for model training and prediction. Our experiments indicate that the BILSTM model is the best deep learning model for smart contract vulnerability detection task. We looked at how domain features and self-attentiveness mechanisms affected the ability to identify 12 different kinds of smart contract vulnerabilities. Our results show that by including domain features, we significantly increased the F1 values for 8 different types of vulnerabilities, with improvements ranging from 7.35% to 48.58%. The methods suggested in this study demonstrate a significant improvement in F1 scores ranging from 4.18% to 38.70% when compared to conventional detection tools like Oyente, Mythril, Osiris, Slither, Smartcheck, and Securify. This study provides developers with a more effective method of detecting smart contract vulnerabilities, assisting in the prevention of potential financial losses. This research provides developers with a more effective means of detecting smart contract vulnerabilities, thereby helping to prevent potential financial losses.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
专注的秀发布了新的文献求助10
1秒前
bofu发布了新的文献求助10
2秒前
3秒前
麒葩!发布了新的文献求助10
3秒前
书记发布了新的文献求助10
3秒前
烟花应助hesven采纳,获得10
4秒前
zho发布了新的文献求助10
7秒前
7秒前
7秒前
amy发布了新的文献求助10
8秒前
空白、发布了新的文献求助10
8秒前
大方的凌波完成签到,获得积分10
9秒前
bofu发布了新的文献求助10
9秒前
shasha完成签到,获得积分20
9秒前
10秒前
10秒前
鲁大师完成签到,获得积分10
11秒前
zzz完成签到,获得积分10
11秒前
12秒前
cyw发布了新的文献求助10
13秒前
可可发布了新的文献求助10
14秒前
爆米花应助Rab_b1t采纳,获得10
15秒前
15秒前
林洛沁完成签到,获得积分10
16秒前
冲冲冲发布了新的文献求助10
16秒前
1680Y发布了新的文献求助10
16秒前
迅速曲奇发布了新的文献求助10
16秒前
bofu发布了新的文献求助20
16秒前
16秒前
卖萌的秋田完成签到,获得积分10
18秒前
19秒前
叶世玉发布了新的文献求助20
19秒前
慕容博完成签到 ,获得积分10
20秒前
珏珏发布了新的文献求助10
20秒前
brainxue发布了新的文献求助10
20秒前
22秒前
徐嘿嘿发布了新的文献求助10
23秒前
026发布了新的文献求助10
23秒前
24秒前
bofu发布了新的文献求助20
25秒前
高分求助中
Continuum Thermodynamics and Material Modelling 4000
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
El viaje de una vida: Memorias de María Lecea 800
Theory of Block Polymer Self-Assembly 750
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3514588
求助须知:如何正确求助?哪些是违规求助? 3096951
关于积分的说明 9233306
捐赠科研通 2791978
什么是DOI,文献DOI怎么找? 1532173
邀请新用户注册赠送积分活动 711816
科研通“疑难数据库(出版商)”最低求助积分说明 707031