Application of DA-Bi-SRU and Improved RoBERTa Model in Entity Relationship Extraction for High-Speed Train Bogie

转向架 萃取(化学) 计算机科学 汽车工程 工程类 机械工程 色谱法 化学
作者
Yan Jiang,Zhihou Zhang,Lingfeng He,Tianyi Gong,Jiawen Du,Xinyu Yin
标识
DOI:10.1109/dsit60026.2023.00023
摘要

Due to the large number of professional terms and complex entity relationships in the field of high-speed train (HST) bogie, the accuracy of entity relationship extraction is low. In order to improve the efficiency and accuracy of entity relationship extraction in high-speed train bogie domain, we propose a novel entity relationship extraction model for the domain of high-speed train (HST) bogie with the aim of improving the efficiency and accuracy of entity relationship extraction. The proposed model is based on RoBERTa-wwm (A Robustly Optimized BERT Pretraining Approach with Whole Word Masking) and DA-Bi-SRU (Double-Attention-Based Bidirectional Simple Recurrent Unit). To facilitate this, we construct a new bogie relation extraction dataset comprising of 25,000 statements collected from literature and professional annotations. The RoBERTa-wwm is employed to obtain dynamic word vectors from the input statements and optimized using the bogie dataset. Subsequently, a Bi-SRU model based on dual attention mechanism is developed to capture bidirectional semantic information and contextual semantic linkage in a rapid manner. Our experiments show that the RoBERTa-wwm-DA-Bi-SRU model outperforms Bi-LSTM and RNN methods with a prediction accuracy of 88.53% and an F1 value of 86.60%. Our proposed model thus demonstrates the potential to accurately extract entity relationships in the bogie knowledge graph of high-speed trains, simplifying the construction process.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
科研通AI2S应助论文狗采纳,获得10
1秒前
活力的冬云完成签到,获得积分10
1秒前
榆果子发布了新的文献求助10
2秒前
风清扬发布了新的文献求助10
2秒前
kendall完成签到 ,获得积分10
2秒前
ldp关注了科研通微信公众号
3秒前
喃喃完成签到,获得积分10
3秒前
爆米花应助南非的猫采纳,获得10
3秒前
谢慧蕴应助小兔采纳,获得10
3秒前
orixero应助以一采纳,获得10
4秒前
乌拉拉完成签到,获得积分20
5秒前
Akim应助magiczhu采纳,获得10
5秒前
负责的中道完成签到,获得积分10
6秒前
6秒前
8秒前
深情安青应助拓跋箴采纳,获得10
9秒前
深情安青应助WMinH采纳,获得10
9秒前
9秒前
南北发布了新的文献求助10
9秒前
wanci应助负责的中道采纳,获得10
10秒前
kittylee发布了新的文献求助10
10秒前
天天SCI发布了新的文献求助20
12秒前
CN1681681发布了新的文献求助10
12秒前
许思真发布了新的文献求助10
13秒前
论文狗发布了新的文献求助10
13秒前
轻舟发布了新的文献求助10
16秒前
充电宝应助石榴汁的书采纳,获得10
17秒前
科研通AI6应助Vivian薇薇安采纳,获得10
17秒前
科研通AI6应助风啊采纳,获得10
17秒前
曾丹么么哒完成签到,获得积分10
17秒前
李健应助小耿采纳,获得10
18秒前
20秒前
21秒前
23秒前
24秒前
JamesPei应助李忠婉采纳,获得10
24秒前
25秒前
科研人才完成签到 ,获得积分10
25秒前
傲娇的友易完成签到 ,获得积分20
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Constitutional and Administrative Law 1000
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
The YWCA in China The Making of a Chinese Christian Women’s Institution, 1899–1957 400
Numerical controlled progressive forming as dieless forming 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5393959
求助须知:如何正确求助?哪些是违规求助? 4515339
关于积分的说明 14053606
捐赠科研通 4426550
什么是DOI,文献DOI怎么找? 2431423
邀请新用户注册赠送积分活动 1423549
关于科研通互助平台的介绍 1402529