Application of DA-Bi-SRU and Improved RoBERTa Model in Entity Relationship Extraction for High-Speed Train Bogie

转向架 萃取(化学) 计算机科学 汽车工程 工程类 机械工程 色谱法 化学
作者
Yan Jiang,Zhihou Zhang,Lingfeng He,Tianyi Gong,Jiawen Du,Xinyu Yin
标识
DOI:10.1109/dsit60026.2023.00023
摘要

Due to the large number of professional terms and complex entity relationships in the field of high-speed train (HST) bogie, the accuracy of entity relationship extraction is low. In order to improve the efficiency and accuracy of entity relationship extraction in high-speed train bogie domain, we propose a novel entity relationship extraction model for the domain of high-speed train (HST) bogie with the aim of improving the efficiency and accuracy of entity relationship extraction. The proposed model is based on RoBERTa-wwm (A Robustly Optimized BERT Pretraining Approach with Whole Word Masking) and DA-Bi-SRU (Double-Attention-Based Bidirectional Simple Recurrent Unit). To facilitate this, we construct a new bogie relation extraction dataset comprising of 25,000 statements collected from literature and professional annotations. The RoBERTa-wwm is employed to obtain dynamic word vectors from the input statements and optimized using the bogie dataset. Subsequently, a Bi-SRU model based on dual attention mechanism is developed to capture bidirectional semantic information and contextual semantic linkage in a rapid manner. Our experiments show that the RoBERTa-wwm-DA-Bi-SRU model outperforms Bi-LSTM and RNN methods with a prediction accuracy of 88.53% and an F1 value of 86.60%. Our proposed model thus demonstrates the potential to accurately extract entity relationships in the bogie knowledge graph of high-speed trains, simplifying the construction process.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
王娇发布了新的文献求助10
刚刚
壮观溪流发布了新的文献求助10
刚刚
18859805972完成签到 ,获得积分10
1秒前
科研通AI6应助哈哈哈采纳,获得10
1秒前
2秒前
彭佳完成签到 ,获得积分10
3秒前
文艺的半双完成签到,获得积分10
4秒前
wanci应助平常的半凡采纳,获得10
4秒前
tang发布了新的文献求助30
6秒前
勤奋的山兰完成签到,获得积分10
6秒前
InTroLLe完成签到,获得积分10
6秒前
jack应助光亮映波采纳,获得10
6秒前
6秒前
华仔应助无所吊谓采纳,获得10
6秒前
8秒前
ceeray23应助甜美紫菜采纳,获得10
9秒前
NexusExplorer应助优秀静珊采纳,获得10
9秒前
SciGPT应助李嘿嘿采纳,获得10
10秒前
HalloYa完成签到 ,获得积分10
11秒前
脑洞疼应助tianliyan采纳,获得10
11秒前
科研通AI6应助苻尔曼采纳,获得10
12秒前
12秒前
炙热灰狼完成签到,获得积分10
12秒前
13秒前
13秒前
无心的星月完成签到 ,获得积分10
13秒前
淡定的迎梦完成签到,获得积分10
14秒前
15秒前
壮观溪流完成签到,获得积分10
15秒前
16秒前
16秒前
爱喝可乐发布了新的文献求助10
16秒前
科研通AI6应助ifif521采纳,获得10
16秒前
16秒前
17秒前
Starshine发布了新的文献求助10
18秒前
TSW发布了新的文献求助10
18秒前
激昂的柚子完成签到,获得积分10
19秒前
19秒前
FashionBoy应助mmmmmeducn采纳,获得10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Artificial Intelligence driven Materials Design 600
Comparing natural with chemical additive production 500
Machine Learning in Chemistry 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5195129
求助须知:如何正确求助?哪些是违规求助? 4377276
关于积分的说明 13631828
捐赠科研通 4232475
什么是DOI,文献DOI怎么找? 2321675
邀请新用户注册赠送积分活动 1319787
关于科研通互助平台的介绍 1270209