Application of DA-Bi-SRU and Improved RoBERTa Model in Entity Relationship Extraction for High-Speed Train Bogie

转向架 萃取(化学) 计算机科学 汽车工程 工程类 机械工程 色谱法 化学
作者
Yan Jiang,Zhihou Zhang,Lingfeng He,Tianyi Gong,Jiawen Du,Xinyu Yin
标识
DOI:10.1109/dsit60026.2023.00023
摘要

Due to the large number of professional terms and complex entity relationships in the field of high-speed train (HST) bogie, the accuracy of entity relationship extraction is low. In order to improve the efficiency and accuracy of entity relationship extraction in high-speed train bogie domain, we propose a novel entity relationship extraction model for the domain of high-speed train (HST) bogie with the aim of improving the efficiency and accuracy of entity relationship extraction. The proposed model is based on RoBERTa-wwm (A Robustly Optimized BERT Pretraining Approach with Whole Word Masking) and DA-Bi-SRU (Double-Attention-Based Bidirectional Simple Recurrent Unit). To facilitate this, we construct a new bogie relation extraction dataset comprising of 25,000 statements collected from literature and professional annotations. The RoBERTa-wwm is employed to obtain dynamic word vectors from the input statements and optimized using the bogie dataset. Subsequently, a Bi-SRU model based on dual attention mechanism is developed to capture bidirectional semantic information and contextual semantic linkage in a rapid manner. Our experiments show that the RoBERTa-wwm-DA-Bi-SRU model outperforms Bi-LSTM and RNN methods with a prediction accuracy of 88.53% and an F1 value of 86.60%. Our proposed model thus demonstrates the potential to accurately extract entity relationships in the bogie knowledge graph of high-speed trains, simplifying the construction process.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
曹先生发布了新的文献求助10
1秒前
王蕊发布了新的文献求助20
1秒前
renyi完成签到 ,获得积分10
1秒前
wlx完成签到,获得积分10
1秒前
1秒前
2秒前
Deeki完成签到,获得积分10
2秒前
2秒前
2秒前
肉沫鸭完成签到,获得积分10
2秒前
鲜艳的忆枫完成签到,获得积分20
2秒前
3秒前
江鑫楷完成签到,获得积分10
3秒前
传奇3应助123采纳,获得10
3秒前
皇甫绍辉完成签到,获得积分10
3秒前
yinx完成签到,获得积分10
3秒前
下雪完成签到,获得积分10
3秒前
加碘盐完成签到,获得积分10
3秒前
shmily完成签到,获得积分10
3秒前
所所应助老衲采纳,获得10
4秒前
科研通AI6应助hu采纳,获得10
4秒前
科研通AI6应助心灵尔安采纳,获得10
4秒前
激情的随阴完成签到,获得积分10
4秒前
绵绵球完成签到,获得积分0
5秒前
在水一方应助Dream采纳,获得10
5秒前
囚徒完成签到,获得积分10
5秒前
斯文败类应助陈佩chenpei采纳,获得10
6秒前
6秒前
Jouleken完成签到,获得积分0
6秒前
和谐的黄豆完成签到,获得积分10
7秒前
小林子发布了新的文献求助10
7秒前
7秒前
7秒前
Jim完成签到 ,获得积分10
7秒前
8秒前
兔子发布了新的文献求助10
9秒前
Yu完成签到,获得积分20
9秒前
奋斗慕凝完成签到 ,获得积分10
9秒前
酷波er应助starts采纳,获得10
10秒前
YuenYuen完成签到,获得积分10
10秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5338124
求助须知:如何正确求助?哪些是违规求助? 4475332
关于积分的说明 13928100
捐赠科研通 4370553
什么是DOI,文献DOI怎么找? 2401309
邀请新用户注册赠送积分活动 1394430
关于科研通互助平台的介绍 1366313