Application of DA-Bi-SRU and Improved RoBERTa Model in Entity Relationship Extraction for High-Speed Train Bogie

转向架 萃取(化学) 计算机科学 汽车工程 工程类 机械工程 色谱法 化学
作者
Yan Jiang,Zhihou Zhang,Lingfeng He,Tianyi Gong,Jiawen Du,Xinyu Yin
标识
DOI:10.1109/dsit60026.2023.00023
摘要

Due to the large number of professional terms and complex entity relationships in the field of high-speed train (HST) bogie, the accuracy of entity relationship extraction is low. In order to improve the efficiency and accuracy of entity relationship extraction in high-speed train bogie domain, we propose a novel entity relationship extraction model for the domain of high-speed train (HST) bogie with the aim of improving the efficiency and accuracy of entity relationship extraction. The proposed model is based on RoBERTa-wwm (A Robustly Optimized BERT Pretraining Approach with Whole Word Masking) and DA-Bi-SRU (Double-Attention-Based Bidirectional Simple Recurrent Unit). To facilitate this, we construct a new bogie relation extraction dataset comprising of 25,000 statements collected from literature and professional annotations. The RoBERTa-wwm is employed to obtain dynamic word vectors from the input statements and optimized using the bogie dataset. Subsequently, a Bi-SRU model based on dual attention mechanism is developed to capture bidirectional semantic information and contextual semantic linkage in a rapid manner. Our experiments show that the RoBERTa-wwm-DA-Bi-SRU model outperforms Bi-LSTM and RNN methods with a prediction accuracy of 88.53% and an F1 value of 86.60%. Our proposed model thus demonstrates the potential to accurately extract entity relationships in the bogie knowledge graph of high-speed trains, simplifying the construction process.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李爱国应助现代的慕凝采纳,获得20
1秒前
土豆国王完成签到,获得积分10
1秒前
2秒前
2秒前
米卫兵_星完成签到 ,获得积分10
2秒前
天天快乐应助丁莞采纳,获得10
2秒前
3秒前
高贵宛海发布了新的文献求助10
4秒前
qq大魔王发布了新的文献求助10
4秒前
5秒前
Rita发布了新的文献求助10
5秒前
嘉麓发布了新的文献求助10
7秒前
娃娃哈发布了新的文献求助10
9秒前
10秒前
10秒前
土豆国王发布了新的文献求助10
10秒前
11秒前
杨怀托发布了新的文献求助10
11秒前
臭鸡发布了新的文献求助10
11秒前
记忆超群完成签到,获得积分10
12秒前
12秒前
wh完成签到 ,获得积分10
12秒前
12秒前
小杭76应助负责的弘文采纳,获得40
13秒前
焚天尘殇完成签到,获得积分10
13秒前
马志青完成签到,获得积分10
13秒前
婷婷发布了新的文献求助10
15秒前
云不归发布了新的文献求助10
15秒前
15秒前
16秒前
玛卡巴卡发布了新的文献求助10
16秒前
香蕉觅云应助健忘的元柏采纳,获得10
17秒前
17秒前
wanci应助阿政采纳,获得10
17秒前
Rla发布了新的文献求助10
17秒前
娃娃哈完成签到,获得积分10
17秒前
17秒前
倔大三发布了新的文献求助10
17秒前
18秒前
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Constitutional and Administrative Law 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5263923
求助须知:如何正确求助?哪些是违规求助? 4424277
关于积分的说明 13772673
捐赠科研通 4299346
什么是DOI,文献DOI怎么找? 2359021
邀请新用户注册赠送积分活动 1355330
关于科研通互助平台的介绍 1316589