Application of DA-Bi-SRU and Improved RoBERTa Model in Entity Relationship Extraction for High-Speed Train Bogie

转向架 萃取(化学) 计算机科学 汽车工程 工程类 机械工程 色谱法 化学
作者
Yan Jiang,Zhihou Zhang,Lingfeng He,Tianyi Gong,Jiawen Du,Xinyu Yin
标识
DOI:10.1109/dsit60026.2023.00023
摘要

Due to the large number of professional terms and complex entity relationships in the field of high-speed train (HST) bogie, the accuracy of entity relationship extraction is low. In order to improve the efficiency and accuracy of entity relationship extraction in high-speed train bogie domain, we propose a novel entity relationship extraction model for the domain of high-speed train (HST) bogie with the aim of improving the efficiency and accuracy of entity relationship extraction. The proposed model is based on RoBERTa-wwm (A Robustly Optimized BERT Pretraining Approach with Whole Word Masking) and DA-Bi-SRU (Double-Attention-Based Bidirectional Simple Recurrent Unit). To facilitate this, we construct a new bogie relation extraction dataset comprising of 25,000 statements collected from literature and professional annotations. The RoBERTa-wwm is employed to obtain dynamic word vectors from the input statements and optimized using the bogie dataset. Subsequently, a Bi-SRU model based on dual attention mechanism is developed to capture bidirectional semantic information and contextual semantic linkage in a rapid manner. Our experiments show that the RoBERTa-wwm-DA-Bi-SRU model outperforms Bi-LSTM and RNN methods with a prediction accuracy of 88.53% and an F1 value of 86.60%. Our proposed model thus demonstrates the potential to accurately extract entity relationships in the bogie knowledge graph of high-speed trains, simplifying the construction process.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
听雨眠完成签到 ,获得积分10
刚刚
852应助xxy采纳,获得10
刚刚
刚刚
美梦成真福禄寿完成签到 ,获得积分10
1秒前
万能图书馆应助幻心采纳,获得10
1秒前
叶子完成签到 ,获得积分10
1秒前
共享精神应助naturehome采纳,获得10
1秒前
称心乐枫完成签到,获得积分10
2秒前
研友_84mPRL发布了新的文献求助10
2秒前
辛勤安梦完成签到,获得积分10
2秒前
健忘惜海完成签到,获得积分10
2秒前
2秒前
JIN发布了新的文献求助10
2秒前
2秒前
atonnng发布了新的文献求助30
2秒前
kk99123应助毕业即胜利采纳,获得10
3秒前
wlscj应助jjj采纳,获得20
3秒前
淡定草丛完成签到 ,获得积分10
3秒前
ccc完成签到 ,获得积分10
3秒前
繁荣的安双完成签到,获得积分10
4秒前
4秒前
小唐完成签到,获得积分10
4秒前
snowpie完成签到 ,获得积分10
4秒前
Tim完成签到,获得积分10
5秒前
6秒前
tanx发布了新的文献求助10
6秒前
SciGPT应助海洋球采纳,获得10
6秒前
邱晓文完成签到 ,获得积分20
6秒前
6秒前
7秒前
LYH发布了新的文献求助10
7秒前
灿烂千阳完成签到,获得积分10
7秒前
快乐的素完成签到 ,获得积分10
7秒前
8秒前
viviji完成签到,获得积分10
8秒前
健壮道天应助bule采纳,获得10
8秒前
8秒前
真实的一鸣完成签到,获得积分10
8秒前
JJBOND完成签到,获得积分10
8秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
The International Law of the Sea (fourth edition) 800
Teacher Wellbeing: A Real Conversation for Teachers and Leaders 600
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5402410
求助须知:如何正确求助?哪些是违规求助? 4521021
关于积分的说明 14083516
捐赠科研通 4435060
什么是DOI,文献DOI怎么找? 2434548
邀请新用户注册赠送积分活动 1426679
关于科研通互助平台的介绍 1405439