清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Application of DA-Bi-SRU and Improved RoBERTa Model in Entity Relationship Extraction for High-Speed Train Bogie

转向架 萃取(化学) 计算机科学 汽车工程 工程类 机械工程 色谱法 化学
作者
Yan Jiang,Zhihou Zhang,Lingfeng He,Tianyi Gong,Jiawen Du,Xinyu Yin
标识
DOI:10.1109/dsit60026.2023.00023
摘要

Due to the large number of professional terms and complex entity relationships in the field of high-speed train (HST) bogie, the accuracy of entity relationship extraction is low. In order to improve the efficiency and accuracy of entity relationship extraction in high-speed train bogie domain, we propose a novel entity relationship extraction model for the domain of high-speed train (HST) bogie with the aim of improving the efficiency and accuracy of entity relationship extraction. The proposed model is based on RoBERTa-wwm (A Robustly Optimized BERT Pretraining Approach with Whole Word Masking) and DA-Bi-SRU (Double-Attention-Based Bidirectional Simple Recurrent Unit). To facilitate this, we construct a new bogie relation extraction dataset comprising of 25,000 statements collected from literature and professional annotations. The RoBERTa-wwm is employed to obtain dynamic word vectors from the input statements and optimized using the bogie dataset. Subsequently, a Bi-SRU model based on dual attention mechanism is developed to capture bidirectional semantic information and contextual semantic linkage in a rapid manner. Our experiments show that the RoBERTa-wwm-DA-Bi-SRU model outperforms Bi-LSTM and RNN methods with a prediction accuracy of 88.53% and an F1 value of 86.60%. Our proposed model thus demonstrates the potential to accurately extract entity relationships in the bogie knowledge graph of high-speed trains, simplifying the construction process.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
6秒前
武雨寒完成签到 ,获得积分20
8秒前
方白秋完成签到,获得积分10
9秒前
LLLKAIXINGUO完成签到,获得积分10
34秒前
39秒前
冰凌心恋完成签到,获得积分10
42秒前
娜娜完成签到 ,获得积分10
56秒前
细雨听风完成签到,获得积分10
1分钟前
田様应助科研通管家采纳,获得10
1分钟前
1分钟前
hyjcs完成签到,获得积分0
1分钟前
as9988776654完成签到 ,获得积分10
1分钟前
默默雪旋完成签到 ,获得积分10
1分钟前
2分钟前
chenyue233完成签到,获得积分10
2分钟前
2分钟前
量子星尘发布了新的文献求助50
2分钟前
花园里的蒜完成签到 ,获得积分0
3分钟前
科研通AI6应助科研通管家采纳,获得10
3分钟前
3分钟前
loen完成签到,获得积分10
3分钟前
多亿点完成签到 ,获得积分10
3分钟前
shuang完成签到 ,获得积分10
3分钟前
Ava应助michael_suo采纳,获得10
3分钟前
4分钟前
husi发布了新的文献求助10
4分钟前
4分钟前
husi完成签到 ,获得积分20
4分钟前
在水一方应助我爱读文献采纳,获得10
4分钟前
4分钟前
4分钟前
4分钟前
4分钟前
量子星尘发布了新的文献求助10
4分钟前
michael_suo发布了新的文献求助10
5分钟前
michael_suo完成签到,获得积分10
5分钟前
汉堡包应助科研通管家采纳,获得10
5分钟前
爱吃皮囊的大馋虫完成签到 ,获得积分10
5分钟前
大医仁心完成签到 ,获得积分10
5分钟前
馆长举报i beLIeVe求助涉嫌违规
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4596533
求助须知:如何正确求助?哪些是违规求助? 4008426
关于积分的说明 12409207
捐赠科研通 3687443
什么是DOI,文献DOI怎么找? 2032420
邀请新用户注册赠送积分活动 1065646
科研通“疑难数据库(出版商)”最低求助积分说明 950967