Application of DA-Bi-SRU and Improved RoBERTa Model in Entity Relationship Extraction for High-Speed Train Bogie

转向架 萃取(化学) 计算机科学 汽车工程 工程类 机械工程 色谱法 化学
作者
Yan Jiang,Zhihou Zhang,Lingfeng He,Tianyi Gong,Jiawen Du,Xinyu Yin
标识
DOI:10.1109/dsit60026.2023.00023
摘要

Due to the large number of professional terms and complex entity relationships in the field of high-speed train (HST) bogie, the accuracy of entity relationship extraction is low. In order to improve the efficiency and accuracy of entity relationship extraction in high-speed train bogie domain, we propose a novel entity relationship extraction model for the domain of high-speed train (HST) bogie with the aim of improving the efficiency and accuracy of entity relationship extraction. The proposed model is based on RoBERTa-wwm (A Robustly Optimized BERT Pretraining Approach with Whole Word Masking) and DA-Bi-SRU (Double-Attention-Based Bidirectional Simple Recurrent Unit). To facilitate this, we construct a new bogie relation extraction dataset comprising of 25,000 statements collected from literature and professional annotations. The RoBERTa-wwm is employed to obtain dynamic word vectors from the input statements and optimized using the bogie dataset. Subsequently, a Bi-SRU model based on dual attention mechanism is developed to capture bidirectional semantic information and contextual semantic linkage in a rapid manner. Our experiments show that the RoBERTa-wwm-DA-Bi-SRU model outperforms Bi-LSTM and RNN methods with a prediction accuracy of 88.53% and an F1 value of 86.60%. Our proposed model thus demonstrates the potential to accurately extract entity relationships in the bogie knowledge graph of high-speed trains, simplifying the construction process.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
chenfeng2163完成签到,获得积分10
刚刚
周钰滢完成签到 ,获得积分10
1秒前
冷静曼岚完成签到,获得积分10
2秒前
2秒前
桐桐应助无限不尤采纳,获得10
2秒前
3秒前
独特的元霜完成签到,获得积分10
3秒前
姚增楠完成签到,获得积分10
5秒前
车秋寒发布了新的文献求助10
6秒前
油条狗完成签到,获得积分10
6秒前
迷人成协完成签到,获得积分10
6秒前
JC完成签到,获得积分10
6秒前
tanfor完成签到 ,获得积分10
6秒前
8秒前
完美世界应助冲冲冲采纳,获得10
9秒前
spzdss完成签到,获得积分10
10秒前
TKTKW发布了新的文献求助10
10秒前
浮游应助zmy采纳,获得30
11秒前
领导范儿应助之之采纳,获得10
11秒前
Owen应助思妍采纳,获得10
11秒前
legend发布了新的文献求助10
11秒前
洁净糖豆完成签到,获得积分10
13秒前
一期一会完成签到,获得积分10
14秒前
小债发布了新的文献求助20
14秒前
14秒前
14秒前
15秒前
小李完成签到 ,获得积分10
17秒前
予诚完成签到 ,获得积分10
17秒前
18秒前
刘晓倩发布了新的文献求助10
18秒前
19秒前
xixixixi完成签到,获得积分10
19秒前
利利完成签到,获得积分20
20秒前
顾矜应助瓜瓜采纳,获得10
20秒前
乐乐应助瓜瓜采纳,获得10
20秒前
20秒前
悠着点儿卷吧完成签到 ,获得积分10
21秒前
冲冲冲发布了新的文献求助10
23秒前
Glitter发布了新的文献求助10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5305259
求助须知:如何正确求助?哪些是违规求助? 4451472
关于积分的说明 13852140
捐赠科研通 4338857
什么是DOI,文献DOI怎么找? 2382237
邀请新用户注册赠送积分活动 1377329
关于科研通互助平台的介绍 1344719