Fixed Point Cloud Normalization and None-Sequential Modeling for Hand Gesture Recognition Based on Short-Range mmWave Radar Sensor’s Sparse Time-Series Point Cloud

点云 计算机科学 手势识别 手势 人工智能 计算机视觉 云计算 雷达 规范化(社会学) 模式识别(心理学) 电信 社会学 人类学 操作系统
作者
Ji-Young Moon,Byoung-Kug Kim,Jiheon Kang
出处
期刊:IEEE Sensors Journal [Institute of Electrical and Electronics Engineers]
卷期号:24 (7): 10656-10668 被引量:1
标识
DOI:10.1109/jsen.2024.3362473
摘要

This paper introduces a novel approach to hand gesture recognition utilizing sparse time-series point cloud data obtained through a short-range mmWave radar sensor. Our proposed method not only mitigates the need for complex data format conversions but also operates efficiently with sparse time-series point cloud data, leading to significant advantages in processing time and storage consuming. This study focuses on accurately classifying point cloud sequences representing hand gestures by none-complex sequence modeling. The proposed methods include a modified PointNet configuration suitable for gesture recognition and an optimized point cloud data pre-processing. Sequential features of input data applied to the proposed model by integrating frame order information into the vector representation of each point and using point augmentation and sampling to normalize the point cloud that is measured differently depending on the type of hand gesture and position. The performance of a point cloud-based recognition model with a sparse matrix form can be improved by ensuring the preservation of a fixed input shape. Performance experiments demonstrate the superiority of the proposed methods in classification performance compared to existing methods in the RNN series and PointNet. The experimental results provide insights for selecting optimal parameters in specific application environments. In conclusion, this study presents a robust system for hand gesture recognition, offering accurate classification of point cloud sequences without the need for complex data format conversion. The simplicity of data processing and reduced computational cost are notable advantages, contributing to the development of cost-effective and efficient hand gesture recognition systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
齐桓完成签到,获得积分10
1秒前
SciGPT应助精明人达采纳,获得10
1秒前
忆楠完成签到,获得积分20
1秒前
orixero应助夕荀采纳,获得10
3秒前
caipengju完成签到,获得积分10
3秒前
依诺完成签到,获得积分10
4秒前
忆楠发布了新的文献求助30
4秒前
5秒前
斯文败类应助Yoo.采纳,获得10
5秒前
june完成签到,获得积分10
5秒前
6秒前
几又完成签到,获得积分10
6秒前
7秒前
郭慧娜完成签到,获得积分10
7秒前
无比璀璨的番茄完成签到,获得积分20
8秒前
9秒前
JamesPei应助火星上香菇采纳,获得10
9秒前
Ghost发布了新的文献求助10
10秒前
SciGPT应助Leo采纳,获得10
10秒前
11秒前
万能图书馆应助keyantong采纳,获得10
11秒前
忧伤的冰淇淋完成签到 ,获得积分10
12秒前
12秒前
星辰大海应助lgh采纳,获得10
14秒前
夕荀发布了新的文献求助10
15秒前
小董大傻瓜完成签到,获得积分10
15秒前
思源应助光亮笑柳采纳,获得10
16秒前
Nancy2023完成签到,获得积分10
16秒前
百里青寒发布了新的文献求助10
18秒前
小芳儿发布了新的文献求助10
18秒前
18秒前
19秒前
鲤鱼笑白发布了新的文献求助10
20秒前
20秒前
20秒前
21秒前
22秒前
史道夫给史道夫的求助进行了留言
23秒前
所所应助Rencal采纳,获得10
23秒前
24秒前
高分求助中
Evolution 10000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 600
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3157298
求助须知:如何正确求助?哪些是违规求助? 2808647
关于积分的说明 7878088
捐赠科研通 2467070
什么是DOI,文献DOI怎么找? 1313183
科研通“疑难数据库(出版商)”最低求助积分说明 630369
版权声明 601919