Fixed Point Cloud Normalization and None-Sequential Modeling for Hand Gesture Recognition Based on Short-Range mmWave Radar Sensor’s Sparse Time-Series Point Cloud

点云 计算机科学 手势识别 手势 人工智能 计算机视觉 云计算 雷达 规范化(社会学) 模式识别(心理学) 人类学 电信 操作系统 社会学
作者
Ji-Young Moon,Byoung-Kug Kim,Jiheon Kang
出处
期刊:IEEE Sensors Journal [IEEE Sensors Council]
卷期号:24 (7): 10656-10668 被引量:3
标识
DOI:10.1109/jsen.2024.3362473
摘要

This paper introduces a novel approach to hand gesture recognition utilizing sparse time-series point cloud data obtained through a short-range mmWave radar sensor. Our proposed method not only mitigates the need for complex data format conversions but also operates efficiently with sparse time-series point cloud data, leading to significant advantages in processing time and storage consuming. This study focuses on accurately classifying point cloud sequences representing hand gestures by none-complex sequence modeling. The proposed methods include a modified PointNet configuration suitable for gesture recognition and an optimized point cloud data pre-processing. Sequential features of input data applied to the proposed model by integrating frame order information into the vector representation of each point and using point augmentation and sampling to normalize the point cloud that is measured differently depending on the type of hand gesture and position. The performance of a point cloud-based recognition model with a sparse matrix form can be improved by ensuring the preservation of a fixed input shape. Performance experiments demonstrate the superiority of the proposed methods in classification performance compared to existing methods in the RNN series and PointNet. The experimental results provide insights for selecting optimal parameters in specific application environments. In conclusion, this study presents a robust system for hand gesture recognition, offering accurate classification of point cloud sequences without the need for complex data format conversion. The simplicity of data processing and reduced computational cost are notable advantages, contributing to the development of cost-effective and efficient hand gesture recognition systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hxpxp完成签到,获得积分10
1秒前
1秒前
愉快的犀牛完成签到 ,获得积分10
1秒前
量子星尘发布了新的文献求助10
2秒前
Ao_Jiang完成签到,获得积分10
5秒前
6秒前
大知闲闲完成签到 ,获得积分10
13秒前
开心的云完成签到 ,获得积分10
14秒前
量子星尘发布了新的文献求助30
15秒前
打打应助我有一只猫采纳,获得10
15秒前
周常通完成签到,获得积分10
16秒前
朔方姑娘吧完成签到 ,获得积分10
23秒前
24秒前
天道酬勤完成签到,获得积分10
25秒前
26秒前
leena完成签到 ,获得积分10
31秒前
煲煲煲仔饭完成签到 ,获得积分10
33秒前
量子星尘发布了新的文献求助10
34秒前
zhang完成签到 ,获得积分10
34秒前
onevip完成签到,获得积分0
34秒前
dolabmu完成签到 ,获得积分10
35秒前
laber应助科研通管家采纳,获得50
38秒前
laber应助科研通管家采纳,获得50
38秒前
风清扬应助科研通管家采纳,获得150
38秒前
科研通AI5应助科研通管家采纳,获得10
38秒前
和平使命应助科研通管家采纳,获得10
38秒前
laber应助科研通管家采纳,获得50
38秒前
Akim应助科研通管家采纳,获得10
38秒前
科研通AI6应助科研通管家采纳,获得10
38秒前
38秒前
科研通AI6应助科研通管家采纳,获得10
38秒前
康谨完成签到 ,获得积分10
39秒前
Kiki完成签到 ,获得积分10
42秒前
量子星尘发布了新的文献求助10
45秒前
猴王完成签到,获得积分10
48秒前
小海棉完成签到,获得积分10
48秒前
奥丁不言语完成签到 ,获得积分10
48秒前
桃花源的瓶起子完成签到 ,获得积分10
49秒前
河鲸完成签到 ,获得积分10
52秒前
善善完成签到 ,获得积分10
53秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
Thomas Hobbes' Mechanical Conception of Nature 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5093056
求助须知:如何正确求助?哪些是违规求助? 4306804
关于积分的说明 13417225
捐赠科研通 4132917
什么是DOI,文献DOI怎么找? 2264214
邀请新用户注册赠送积分活动 1267918
关于科研通互助平台的介绍 1203651