A knowledge-guided visualization framework of disaster scenes for helping the public cognize risk information

可视化 计算机科学 场景图 应急管理 个性化 数据科学 人机交互 万维网 人工智能 渲染(计算机图形) 政治学 法学
作者
Jun Zhu,Jinbin Zhang,Qing Zhu,Weilian Li,Jianlin Wu,Yukun Guo
出处
期刊:International Journal of Geographical Information Science [Informa]
卷期号:38 (4): 626-653 被引量:18
标识
DOI:10.1080/13658816.2023.2298299
摘要

As an important application of virtual geographic environments (VGEs), virtual disaster scenes are essential in enhancing the public's risk awareness. However, existing virtual disaster scene visualization methods lack expert guidance and fail to meet the public's requirements, resulting in an ineffective public understanding. Therefore, this paper proposes a knowledge-guided disaster scene 3D visualization framework. First, the public's demand for disaster scene visualization is analyzed, and a geographic knowledge graph of disaster scenes is constructed. Second, through the guidance of the knowledge graph, the virtual disaster scenes are fusion modeled and suitability represented. Third, a diverse organization and adaptive scheduling method of disaster scene data for multi-computing devices is established. Finally, we developed a prototype system for disaster scene visualization, selected a typical disaster, and conducted cognitive experiments with eye-tracking technology. The results show that the proposed method can effectively support the adaptive visualization of virtual disaster scenes for four computing devices and maintain an efficient frame rate. In addition, compared with other disaster scene visualization methods, our framework incorporates semantic knowledge of scene, user, demand, and space. It can effectively convey disaster information and help the public cognize disaster risks and has significant advantages in modeling standardization, personalization, and adaptability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wang1090发布了新的文献求助30
刚刚
呜呜呜呜完成签到,获得积分10
刚刚
刚刚
Riki发布了新的文献求助10
1秒前
88发布了新的文献求助10
1秒前
2秒前
充电宝应助zfy采纳,获得10
3秒前
sak完成签到,获得积分10
4秒前
Shuo Yang发布了新的文献求助20
4秒前
呜呜呜呜发布了新的文献求助10
4秒前
在水一方应助hhzz采纳,获得10
4秒前
旧是完成签到 ,获得积分10
5秒前
脑洞疼应助科研通管家采纳,获得10
5秒前
杨小胖完成签到 ,获得积分10
6秒前
CodeCraft应助科研通管家采纳,获得10
6秒前
mm发布了新的文献求助10
6秒前
6秒前
bkagyin应助科研通管家采纳,获得10
6秒前
shouyu29应助科研通管家采纳,获得10
6秒前
天天快乐应助科研通管家采纳,获得10
6秒前
RC_Wang应助科研通管家采纳,获得10
6秒前
充电宝应助科研通管家采纳,获得10
6秒前
6秒前
领导范儿应助科研通管家采纳,获得10
6秒前
科研通AI5应助科研通管家采纳,获得10
6秒前
田様应助科研通管家采纳,获得10
6秒前
7秒前
丘比特应助科研通管家采纳,获得10
7秒前
CodeCraft应助科研通管家采纳,获得30
7秒前
sutharsons应助科研通管家采纳,获得30
7秒前
归海含烟完成签到,获得积分10
7秒前
科研通AI2S应助科研通管家采纳,获得10
7秒前
shire应助科研通管家采纳,获得10
7秒前
Orange应助科研通管家采纳,获得10
7秒前
思源应助科研通管家采纳,获得10
7秒前
RC_Wang应助科研通管家采纳,获得10
7秒前
研友_VZG7GZ应助科研通管家采纳,获得10
7秒前
充电宝应助科研通管家采纳,获得10
8秒前
顾矜应助科研通管家采纳,获得10
8秒前
大个应助科研通管家采纳,获得10
8秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808