Higher-order homophily on simplicial complexes

同性恋 成对比较 订单(交换) 节点(物理) 理论计算机科学 计算机科学 组合数学 数学 人工智能 经济 财务 结构工程 工程类
作者
Arnab Sarker,Natalie Northrup,Ali Jadbabaie
出处
期刊:Proceedings of the National Academy of Sciences of the United States of America [Proceedings of the National Academy of Sciences]
卷期号:121 (12) 被引量:1
标识
DOI:10.1073/pnas.2315931121
摘要

Higher-order network models are becoming increasingly relevant for their ability to explicitly capture interactions between three or more entities in a complex system at once. In this paper, we study homophily, the tendency for alike individuals to form connections, as it pertains to higher-order interactions. We find that straightforward extensions of classical homophily measures to interactions of size 3 and larger are often inflated by homophily present in pairwise interactions. This inflation can even hide the presence of anti-homophily in higher-order interactions. Hence, we develop a structural measure of homophily, simplicial homophily, which decouples homophily in pairwise interactions from that of higher-order interactions. The definition applies when the network can be modeled as a simplicial complex, a mathematical abstraction which makes a closure assumption that for any higher-order relationship in the network, all corresponding subsets of that relationship occur in the data. Whereas previous work has used this closure assumption to develop a rich theory in algebraic topology, here we use the assumption to make empirical comparisons between interactions of different sizes. The simplicial homophily measure is validated theoretically using an extension of a stochastic block model for simplicial complexes and empirically in large-scale experiments across 16 datasets. We further find that simplicial homophily can be used to identify when node features are valuable for higher-order link prediction. Ultimately, this highlights a subtlety in studying node features in higher-order networks, as measures defined on groups of size k can inherit features described by interactions of size [Formula: see text].
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
呆呆完成签到,获得积分10
刚刚
左一酱完成签到 ,获得积分10
1秒前
平淡南霜发布了新的文献求助10
1秒前
Sweet关注了科研通微信公众号
1秒前
1秒前
赘婿应助wangfu采纳,获得10
2秒前
2秒前
2秒前
pipge完成签到,获得积分20
2秒前
3秒前
澳澳发布了新的文献求助10
3秒前
4秒前
清脆的映天完成签到,获得积分10
4秒前
yl驳回了sweetbearm应助
4秒前
隐形曼青应助2鱼采纳,获得10
4秒前
通~发布了新的文献求助10
4秒前
香蕉觅云应助junzilan采纳,获得10
5秒前
张老涵发布了新的文献求助10
5秒前
灌饼发布了新的文献求助30
5秒前
罗实发布了新的文献求助10
5秒前
张张发布了新的文献求助10
6秒前
木香发布了新的文献求助10
6秒前
朴实以松发布了新的文献求助10
6秒前
在水一方应助神帅酷哥采纳,获得10
6秒前
7秒前
7秒前
pipge发布了新的文献求助30
7秒前
7秒前
万能图书馆应助卡卡采纳,获得10
7秒前
牛虫虫发布了新的文献求助30
8秒前
8秒前
柔弱飞雪完成签到,获得积分10
8秒前
一种信仰完成签到 ,获得积分10
8秒前
9秒前
9秒前
10秒前
YE完成签到,获得积分10
10秒前
2鱼完成签到,获得积分10
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794