材料科学
过冷
柔性电子器件
数码产品
刚度
相(物质)
相变
可伸缩电子设备
复合材料
纳米技术
光电子学
电气工程
凝聚态物理
工程类
物理
热力学
有机化学
化学
作者
Minwoo Kim,Sangwoo Hong,Jung Jae Park,Yeongju Jung,Seok Hwan Choi,Chulmin Cho,Inho Ha,Phillip Won,Carmel Majidi,Seung Hwan Ko
标识
DOI:10.1002/adma.202313344
摘要
Due to emerging demands in soft electronics, there is an increasing need for material architectures that support robust interfacing between soft substrates, stretchable electrical interconnects, and embedded rigid microelectronics chips. Though researchers have adopted rigid-island structures to solve the issue, this approach merely shifts stress concentrations from chip-conductor interfaces to rigid-island-soft region interfaces in the substrate. Here, a gradient stiffness-programmed circuit board (GS-PCB) that possesses high stretchability and stability with surface mounted chips is introduced. The board comprises a stiffness-programmed hydrogel substrate and a laser-patterned liquid metal conductor. The hydrogel simultaneously obtains a large stiffness disparity and robust interfaces between rigid-islands and soft regions. These seemingly contradictory conditions are accomplished by adopting a gradient stiffness structure at the interfaces, enabled by combining polymers with different interaction energies and a supercooled sodium acetate solution. By integrating the gel with laser-patterned liquid metal with exceptional properties, GS-PCB exhibits higher electromechanical stability than other rigid-island research. To highlight the practicality of this approach, a finger-sensor device that successfully distinguishes objects by direct physical contact is fabricated, demonstrating its stability under various mechanical disturbances.
科研通智能强力驱动
Strongly Powered by AbleSci AI