Artificial intelligence methods for improved detection of undiagnosed heart failure with preserved ejection fraction
射血分数保留的心力衰竭
医学
心力衰竭
射血分数
心脏病学
内科学
重症监护医学
作者
Ho Chung Wu,Dhruva Biswas,M. J. Ryan,Brett Sydney Bernstein,Maleeha Rizvi,Natalie Fairhurst,George Kaye,Ranu Baral,Thomas Searle,Narbeh Melikian,Daniel Sado,Thomas F. Lüscher,Richard Grocott‐Mason,Gerald Carr‐White,James Teo,Richard Dobson,Daniel I. Bromage,Theresa A. McDonagh,Ajay M. Shah,Kevin O’Gallagher
Heart failure with preserved ejection fraction (HFpEF) remains under-diagnosed in clinical practice despite accounting for nearly half of all heart failure (HF) cases. Accurate and timely diagnosis of HFpEF is crucial for proper patient management and treatment. In this study, we explored the potential of natural language processing (NLP) to improve the detection and diagnosis of HFpEF according to the European Society of Cardiology (ESC) diagnostic criteria.