A Survey and Study of Signal and Data-Driven Approaches for Pipeline Leak Detection and Localization

检漏 管道(软件) 泄漏 管道运输 石油工程 信号(编程语言) 计算机科学 工程类 土木工程 环境科学 可靠性工程 机械工程 环境工程 程序设计语言
作者
Uma Rajasekaran,Mohanaprasad Kothandaraman
出处
期刊:Journal of Pipeline Systems Engineering and Practice [American Society of Civil Engineers]
卷期号:15 (2) 被引量:14
标识
DOI:10.1061/jpsea2.pseng-1611
摘要

A pipeline is critical in conveying water, oil, gas, petrochemicals, and slurry. As the pipeline ages and corrodes, it becomes susceptible to deterioration, resulting in wastage and hazardous damages depending on the material it transports. To mitigate these risks, implementing a suitable monitoring system becomes essential, enabling the early identification of damage and minimizing waste and the potential for hazardous incidents. The pipeline monitoring system can be exterior, visual/biological, and computational. This paper surveys state-of-the-art approaches and also performs experimental analyses with a few methods in signal/data-driven approaches within computational methods. More precisely, signal processing-based leak localization methods, artificial intelligence-based leak detection methods, and combined approaches are given. This paper implements five signal processing-based methods and 17 artificial intelligence-based methods. This implementation helps to compare and understand the significance of appropriate noise removal and feature extraction. The data for this analysis is collected using acousto-optic sensors from an experimental setup. After implementation, the highest observed leak localization accuracy is 99.14% with the wavelet packet adaptive independent component analysis-based generalized cross correlation, and the highest leak detection accuracy is 98.32% with the one-dimensional convolutional neural network.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
毛慢慢发布了新的文献求助10
刚刚
1秒前
NPC应助mjnrhw采纳,获得30
1秒前
1秒前
读研好难完成签到,获得积分10
1秒前
LHX完成签到 ,获得积分10
2秒前
完美世界应助楠楠2001采纳,获得10
2秒前
彭于晏应助小于采纳,获得10
3秒前
平常的可乐完成签到 ,获得积分10
3秒前
YY-Bubble发布了新的文献求助10
3秒前
3秒前
ZZ完成签到 ,获得积分10
4秒前
调研昵称发布了新的文献求助10
4秒前
李铁路完成签到,获得积分10
4秒前
本之上课完成签到,获得积分10
5秒前
ooochen完成签到,获得积分10
5秒前
爱竹子的Panda完成签到 ,获得积分10
6秒前
AA应助一个采纳,获得10
6秒前
6秒前
沉静的小土豆完成签到,获得积分10
6秒前
FashionBoy应助四件采纳,获得10
7秒前
鲤鱼坤完成签到 ,获得积分10
7秒前
拼搏的萧完成签到 ,获得积分10
7秒前
Fier在哪完成签到,获得积分10
8秒前
maliang666完成签到,获得积分10
8秒前
9秒前
9秒前
善学以致用应助波波采纳,获得10
9秒前
9秒前
科研通AI2S应助dydy采纳,获得10
9秒前
Orange应助rt三角采纳,获得10
9秒前
在宁22222222222完成签到,获得积分10
10秒前
贪玩果汁完成签到,获得积分10
11秒前
shhyyds发布了新的文献求助20
11秒前
小巧的弘文完成签到,获得积分10
11秒前
rgaerva完成签到,获得积分20
11秒前
12秒前
无情的如波完成签到,获得积分20
12秒前
zouzhen完成签到,获得积分20
12秒前
Ari_Kun完成签到 ,获得积分10
13秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3305226
求助须知:如何正确求助?哪些是违规求助? 2939075
关于积分的说明 8491339
捐赠科研通 2613524
什么是DOI,文献DOI怎么找? 1427464
科研通“疑难数据库(出版商)”最低求助积分说明 663054
邀请新用户注册赠送积分活动 647708