Leveraging error-assisted fine-tuning large language models for manufacturing excellence

卓越 计算机科学 政治学 法学
作者
Liqiao Xia,Chengxi Li,Canbin Zhang,Shimin Liu,Pai Zheng
出处
期刊:Robotics and Computer-integrated Manufacturing [Elsevier]
卷期号:88: 102728-102728 被引量:4
标识
DOI:10.1016/j.rcim.2024.102728
摘要

The emergence of large language models (LLM), like GPT, is revolutionizing the field of information retrieval, finding applications across a wide range of domains. However, the intricate domain knowledge and the unique software paradigms inherent to the manufacturing sector have posed significant barriers to the effective utilization of LLM. To address this divide, an error-assisted fine-tuning approach is proposed to adapt LLM specifically for the manufacturing domain. Initially, the LLM is fine-tuned using a manufacturing-domain corpus, allowing it to learn and adapt to the nuances of the manufacturing field. Additionally, the injection of a labeled dataset into a pre-configured LLM enhances its ability to identify key elements within the domain. To ensure the generation of syntactically valid programs in domain-specific languages, and to accommodate environmental constraints, an error-assisted iterative prompting procedure is introduced, which facilitates the generation of reliable and expected code. Experimental results demonstrate the model's proficiency in accurately responding to manufacturing-related queries and its effectiveness in generating reliable code, where the accuracy of judgment querying can experience an improvement of approximately 4.1%. By expanding the applicability of LLM to the manufacturing industry, it is hoped that this research will pave the way for a broad array of new LLM-based applications within manufacturing.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
大水完成签到 ,获得积分10
1秒前
1秒前
Akira完成签到,获得积分20
2秒前
隐形曼青应助是ok耶采纳,获得10
3秒前
4秒前
4秒前
11111发布了新的文献求助20
5秒前
大水发布了新的文献求助10
7秒前
7秒前
小蘑菇应助保持科研热情采纳,获得10
7秒前
所所应助蓦然采纳,获得10
8秒前
8秒前
爱科研的小蜗啊完成签到,获得积分10
9秒前
从容梦山发布了新的文献求助10
9秒前
9秒前
9秒前
量子星尘发布了新的文献求助10
10秒前
10秒前
11秒前
luo完成签到,获得积分10
12秒前
13秒前
HQQ完成签到,获得积分20
13秒前
Ava应助夏洛采纳,获得10
14秒前
小二郎应助violet采纳,获得10
14秒前
乐观的灭绝完成签到,获得积分10
15秒前
文艺大白菜完成签到,获得积分10
15秒前
难过的谷芹应助无为采纳,获得10
15秒前
情怀应助Ljh采纳,获得10
16秒前
17秒前
17秒前
17秒前
赘婿应助秋qiu采纳,获得10
17秒前
18秒前
18秒前
19秒前
20秒前
李周发布了新的文献求助10
22秒前
23秒前
linnn发布了新的文献求助10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5737586
求助须知:如何正确求助?哪些是违规求助? 5373212
关于积分的说明 15335749
捐赠科研通 4880965
什么是DOI,文献DOI怎么找? 2623199
邀请新用户注册赠送积分活动 1572027
关于科研通互助平台的介绍 1528848