Leveraging error-assisted fine-tuning large language models for manufacturing excellence

卓越 计算机科学 政治学 法学
作者
Liqiao Xia,Chengxi Li,Canbin Zhang,Shimin Liu,Pai Zheng
出处
期刊:Robotics and Computer-integrated Manufacturing [Elsevier BV]
卷期号:88: 102728-102728 被引量:4
标识
DOI:10.1016/j.rcim.2024.102728
摘要

The emergence of large language models (LLM), like GPT, is revolutionizing the field of information retrieval, finding applications across a wide range of domains. However, the intricate domain knowledge and the unique software paradigms inherent to the manufacturing sector have posed significant barriers to the effective utilization of LLM. To address this divide, an error-assisted fine-tuning approach is proposed to adapt LLM specifically for the manufacturing domain. Initially, the LLM is fine-tuned using a manufacturing-domain corpus, allowing it to learn and adapt to the nuances of the manufacturing field. Additionally, the injection of a labeled dataset into a pre-configured LLM enhances its ability to identify key elements within the domain. To ensure the generation of syntactically valid programs in domain-specific languages, and to accommodate environmental constraints, an error-assisted iterative prompting procedure is introduced, which facilitates the generation of reliable and expected code. Experimental results demonstrate the model's proficiency in accurately responding to manufacturing-related queries and its effectiveness in generating reliable code, where the accuracy of judgment querying can experience an improvement of approximately 4.1%. By expanding the applicability of LLM to the manufacturing industry, it is hoped that this research will pave the way for a broad array of new LLM-based applications within manufacturing.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Synthen完成签到,获得积分10
刚刚
蔡tonghui发布了新的文献求助10
1秒前
新青年发布了新的文献求助30
3秒前
李爱国应助lql采纳,获得10
3秒前
所所应助虚心沂采纳,获得10
3秒前
平常的芝麻完成签到,获得积分10
4秒前
4秒前
莫羽倾尘完成签到,获得积分10
4秒前
轻松的亦寒应助GOW采纳,获得20
4秒前
5秒前
一天发布了新的文献求助10
5秒前
派大星发布了新的文献求助10
5秒前
高手完成签到,获得积分20
6秒前
搜集达人应助薛建伟采纳,获得10
6秒前
个性蓝发布了新的文献求助10
6秒前
阔达金鱼发布了新的文献求助10
7秒前
吨吨喝水发布了新的文献求助10
7秒前
7秒前
鲁鲁完成签到,获得积分10
7秒前
7秒前
7秒前
7秒前
传奇3应助单于万言采纳,获得10
8秒前
ding应助帅气书白采纳,获得10
9秒前
9秒前
10秒前
Ada关闭了Ada文献求助
10秒前
量子星尘发布了新的文献求助10
10秒前
zq完成签到,获得积分10
11秒前
LXP完成签到,获得积分10
11秒前
11秒前
大意的如雪完成签到 ,获得积分20
12秒前
12秒前
一天完成签到,获得积分20
12秒前
SYLH应助火锅采纳,获得20
12秒前
好大的影响因子来完成签到 ,获得积分10
12秒前
13秒前
陶征应助xx采纳,获得10
13秒前
诚诚诚完成签到,获得积分10
13秒前
wwww发布了新的文献求助10
14秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979242
求助须知:如何正确求助?哪些是违规求助? 3523187
关于积分的说明 11216570
捐赠科研通 3260615
什么是DOI,文献DOI怎么找? 1800151
邀请新用户注册赠送积分活动 878854
科研通“疑难数据库(出版商)”最低求助积分说明 807099