Leveraging error-assisted fine-tuning large language models for manufacturing excellence

卓越 计算机科学 政治学 法学
作者
Liqiao Xia,Chengxi Li,Canbin Zhang,Shimin Liu,Pai Zheng
出处
期刊:Robotics and Computer-integrated Manufacturing [Elsevier]
卷期号:88: 102728-102728 被引量:4
标识
DOI:10.1016/j.rcim.2024.102728
摘要

The emergence of large language models (LLM), like GPT, is revolutionizing the field of information retrieval, finding applications across a wide range of domains. However, the intricate domain knowledge and the unique software paradigms inherent to the manufacturing sector have posed significant barriers to the effective utilization of LLM. To address this divide, an error-assisted fine-tuning approach is proposed to adapt LLM specifically for the manufacturing domain. Initially, the LLM is fine-tuned using a manufacturing-domain corpus, allowing it to learn and adapt to the nuances of the manufacturing field. Additionally, the injection of a labeled dataset into a pre-configured LLM enhances its ability to identify key elements within the domain. To ensure the generation of syntactically valid programs in domain-specific languages, and to accommodate environmental constraints, an error-assisted iterative prompting procedure is introduced, which facilitates the generation of reliable and expected code. Experimental results demonstrate the model's proficiency in accurately responding to manufacturing-related queries and its effectiveness in generating reliable code, where the accuracy of judgment querying can experience an improvement of approximately 4.1%. By expanding the applicability of LLM to the manufacturing industry, it is hoped that this research will pave the way for a broad array of new LLM-based applications within manufacturing.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
贲从蓉发布了新的文献求助10
1秒前
1秒前
传奇3应助草莓布丁采纳,获得10
2秒前
量子星尘发布了新的文献求助30
3秒前
3秒前
勤恳曼卉发布了新的文献求助10
3秒前
4秒前
shjyang完成签到,获得积分0
4秒前
直率苡完成签到,获得积分10
4秒前
小丫发布了新的文献求助10
4秒前
liberty发布了新的文献求助10
5秒前
5秒前
tangcan完成签到,获得积分20
6秒前
852应助宋song采纳,获得10
6秒前
清新的代芹完成签到,获得积分10
6秒前
lingling发布了新的文献求助10
6秒前
如意芷蕾发布了新的文献求助10
6秒前
刘某发布了新的文献求助10
7秒前
Criminology34应助科研通管家采纳,获得10
8秒前
Criminology34应助科研通管家采纳,获得10
8秒前
8秒前
8秒前
zh应助科研通管家采纳,获得10
8秒前
zh应助科研通管家采纳,获得10
8秒前
zh应助科研通管家采纳,获得10
8秒前
8秒前
Criminology34应助科研通管家采纳,获得10
8秒前
8秒前
8秒前
Criminology34应助科研通管家采纳,获得10
8秒前
Orange应助科研通管家采纳,获得10
8秒前
8秒前
8秒前
Orange应助科研通管家采纳,获得10
8秒前
8秒前
8秒前
Criminology34应助科研通管家采纳,获得10
8秒前
星辰大海应助科研通管家采纳,获得10
8秒前
8秒前
Criminology34应助科研通管家采纳,获得10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
the Oxford Guide to the Bantu Languages 3000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5762181
求助须知:如何正确求助?哪些是违规求助? 5534311
关于积分的说明 15402288
捐赠科研通 4898393
什么是DOI,文献DOI怎么找? 2634850
邀请新用户注册赠送积分活动 1583000
关于科研通互助平台的介绍 1538201