自愈水凝胶
材料科学
聚丙烯酸
丙烯酸
纳米纤维
壳聚糖
标度系数
自由基聚合
聚合物
聚合
化学工程
聚电解质
纳米技术
高分子化学
复合材料
制作
单体
医学
替代医学
病理
工程类
作者
Bingyan Wang,Xueyan Wang,Wenxia Liu,Zhaoping Song,Huili Wang,Guodong Li,Dehai Yu,Xiaona Liu,Shaohua Ge
标识
DOI:10.1016/j.ijbiomac.2024.129225
摘要
Liquid metal (LM) microdroplets have garnered significant interest as conductive materials for initiating free radical polymerization in the development of conductive hydrogels suited for strain sensors. However, crafting multi-functional conductive hydrogels that boast both high stretchability and superior sensing capabilities remains as a challenge. In this study, we have successfully synthesized LM-based conductive hydrogels characterized by remarkable stretchability and sensing performance employing acrylic acid (AA) to evenly distribute chitosan nanofibers (CSFs) and to subsequently catalyze the free radical polymerization of AA. The resultant polymer network was crosslinked within situ polyacrylic acid (PAA), facilitated by Ga3+ in conjunction with guar gum (GG)-stabilized Ga droplets. The strategic interplay between the rigid, and protonated CSFs and the pliable PAA matrix, coupled with the ionic crosslinking of Ga3+, endows the resulting GG-Ga-CSF-PAA hydrogel with high stretchability (3700 %), ultrafast self-healing, robust moldability, and strong adhesiveness. When deployed as a strain sensing material, this hydrogel exhibits a high gauge factor (38.8), a minimal detection threshold, enduring durability, and a broad operational range. This versatility enables the hydrogel-based strain sensor to monitor a wide spectrum of human motions. Remarkably, the hydrogel maintains its stretchability and sensing efficacy under extreme temperatures after a simple glycerol solution treatment.
科研通智能强力驱动
Strongly Powered by AbleSci AI