Programmed cell death-index (PCDi) as a prognostic biomarker and predictor of drug sensitivity in cervical cancer: a machine learning-based analysis of mRNA signatures

医学 宫颈癌 肿瘤科 生物标志物 列线图 内科学 多西紫杉醇 癌症 顺铂 紫杉醇 化疗 生物 生物化学
作者
Wei Wang,Pengchen Chen,Songhua Yuan
出处
期刊:Journal of Cancer [Ivyspring International Publisher]
卷期号:15 (5): 1378-1396
标识
DOI:10.7150/jca.91798
摘要

Purpose: Cervical cancer is a significant public health concern, particularly in developing countries. Despite available treatment strategies, the prognosis for patients with locally advanced cervical cancer and beyond remains poor. Therefore, an accurate prediction model that can reliably forecast prognosis is essential in clinical setting. Programmed cell death (PCD) mechanisms are diverse and play a critical role in tumor growth, survival, and metastasis, making PCD a potential reliable prognostic marker for cervical cancer. Methods: In this study, we created a novel prognostic indicator, programmed cell death-index (PCDi), based on a 10-fold cross-validation framework for comprehensive analysis of PCD-associated genes. Results: Our PCDi-based prognostic model outperformed previously published signature models, stratifying cervical cancer patients into two distinct groups with significant differences in overall survival prognosis, tumor immune features, and drug sensitivity. Higher PCDi scores were associated with poorer prognosis. The nomogram survival model integrated PCDi and clinical characteristics, demonstrating higher prognostic prediction performance. Furthermore, our study investigated the immune features of cervical cancer patients and found that those with high PCDi scores had lower infiltrating immune cells, lower potential of T cell dysfunction, and higher potential of T cell exclusion. Patients with high PCDi scores were resistant to classic chemotherapy regimens, including cisplatin, docetaxel, and paclitaxel, but showed sensitivity to the inhibitor SB505124 and Trametinib. Conclusion: Our findings suggest that PCD-related gene signature could serve as a useful biomarker to reliably predict prognosis and guide treatment decisions in cervical cancer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
健壮的怜烟完成签到,获得积分10
刚刚
1秒前
小管发布了新的文献求助10
2秒前
小草发布了新的文献求助10
2秒前
充电宝应助闪闪糖豆采纳,获得10
2秒前
道友且慢完成签到,获得积分10
3秒前
147完成签到,获得积分10
3秒前
SciGPT应助蜗牛采纳,获得10
4秒前
汉堡包应助划水小羊采纳,获得10
4秒前
OmmeHabiba发布了新的文献求助10
4秒前
夏天发布了新的文献求助10
6秒前
在卢浮宫卖玉米完成签到,获得积分10
6秒前
三个菠萝包完成签到 ,获得积分10
7秒前
wolr发布了新的文献求助10
7秒前
jay完成签到,获得积分10
8秒前
9秒前
9秒前
古芍昂发布了新的文献求助10
10秒前
不安青牛应助小巧诗筠采纳,获得10
10秒前
10秒前
cai完成签到,获得积分20
10秒前
aldehyde应助夏天采纳,获得100
11秒前
小小雨泪完成签到,获得积分10
11秒前
11秒前
啦某某完成签到,获得积分10
11秒前
小管完成签到,获得积分10
12秒前
12秒前
12秒前
13秒前
风槿完成签到 ,获得积分10
13秒前
zz完成签到,获得积分10
15秒前
Ava应助高分子狗采纳,获得10
15秒前
15秒前
啦某某发布了新的文献求助10
15秒前
Keria完成签到,获得积分10
15秒前
威武兔子完成签到,获得积分10
16秒前
Zhusy发布了新的文献求助10
16秒前
16秒前
17秒前
17秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Hopemont Capacity Assessment Interview manual and scoring guide 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Neuromuscular and Electrodiagnostic Medicine Board Review 700
中介效应和调节效应模型进阶 400
Refractive Index Metrology of Optical Polymers 400
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3443836
求助须知:如何正确求助?哪些是违规求助? 3039923
关于积分的说明 8979256
捐赠科研通 2728504
什么是DOI,文献DOI怎么找? 1496599
科研通“疑难数据库(出版商)”最低求助积分说明 691703
邀请新用户注册赠送积分活动 689273