Utility and Comparative Performance of Current Artificial Intelligence Large Language Models as Postoperative Medical Support Chatbots in Aesthetic Surgery

医学 心理干预 杠杆(统计) 鉴别诊断 外科 病史 介绍(产科) 精神科 人工智能 病理 计算机科学
作者
Jad Abi‐Rafeh,Nader Henry,Hong Hao Xu,Brian Bassiri-Tehrani,Adel Arezki,Roy Kazan,Mirko S. Gilardino,Foad Nahai
出处
期刊:Aesthetic Surgery Journal [Oxford University Press]
卷期号:44 (8): 889-896 被引量:3
标识
DOI:10.1093/asj/sjae025
摘要

Abstract Background Large language models (LLMs) have revolutionized the way plastic surgeons and their patients can access and leverage artificial intelligence (AI). Objectives The present study aims to compare the performance of 2 current publicly available and patient-accessible LLMs in the potential application of AI as postoperative medical support chatbots in an aesthetic surgeon's practice. Methods Twenty-two simulated postoperative patient presentations following aesthetic breast plastic surgery were devised and expert-validated. Complications varied in their latency within the postoperative period, as well as urgency of required medical attention. In response to each patient-reported presentation, Open AI's ChatGPT and Google's Bard, in their unmodified and freely available versions, were objectively assessed for their comparative accuracy in generating an appropriate differential diagnosis, most-likely diagnosis, suggested medical disposition, treatments or interventions to begin from home, and/or red flag signs/symptoms indicating deterioration. Results ChatGPT cumulatively and significantly outperformed Bard across all objective assessment metrics examined (66% vs 55%, respectively; P < .05). Accuracy in generating an appropriate differential diagnosis was 61% for ChatGPT vs 57% for Bard (P = .45). ChatGPT asked an average of 9.2 questions on history vs Bard’s 6.8 questions (P < .001), with accuracies of 91% vs 68% reporting the most-likely diagnosis, respectively (P < .01). Appropriate medical dispositions were suggested with accuracies of 50% by ChatGPT vs 41% by Bard (P = .40); appropriate home interventions/treatments with accuracies of 59% vs 55% (P = .94), and red flag signs/symptoms with accuracies of 79% vs 54% (P < .01), respectively. Detailed and comparative performance breakdowns according to complication latency and urgency are presented. Conclusions ChatGPT represents the superior LLM for the potential application of AI technology in postoperative medical support chatbots. Imperfect performance and limitations discussed may guide the necessary refinement to facilitate adoption.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
sghsh完成签到,获得积分10
2秒前
葛优发布了新的文献求助10
5秒前
shine完成签到,获得积分10
6秒前
7秒前
7秒前
领导范儿应助yuanyuan采纳,获得10
8秒前
8秒前
木子木子粒完成签到 ,获得积分10
8秒前
8秒前
8秒前
ding应助dada采纳,获得10
9秒前
辛勤者完成签到,获得积分10
9秒前
9秒前
所所应助xqn采纳,获得10
10秒前
科研废物发布了新的文献求助10
11秒前
量子星尘发布了新的文献求助10
12秒前
13秒前
整齐芷文完成签到,获得积分10
13秒前
淅淅沥沥完成签到,获得积分10
14秒前
五一完成签到,获得积分10
14秒前
星辰大海应助hao采纳,获得10
14秒前
舒心书南完成签到,获得积分10
14秒前
wuxunxun2015发布了新的文献求助10
14秒前
15秒前
蓝蓝发布了新的文献求助10
15秒前
量子星尘发布了新的文献求助10
16秒前
Tohka完成签到 ,获得积分10
18秒前
18秒前
19秒前
T1aNer299发布了新的文献求助10
19秒前
me关注了科研通微信公众号
19秒前
CT发布了新的文献求助10
20秒前
灿灿发布了新的文献求助10
20秒前
骆驼翔子完成签到,获得积分10
20秒前
20秒前
Orange应助自由能采纳,获得10
21秒前
21秒前
qdong发布了新的文献求助10
22秒前
goldenfleece发布了新的文献求助10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
A Practical Introduction to Regression Discontinuity Designs 2000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5660080
求助须知:如何正确求助?哪些是违规求助? 4831261
关于积分的说明 15089149
捐赠科研通 4818692
什么是DOI,文献DOI怎么找? 2578738
邀请新用户注册赠送积分活动 1533349
关于科研通互助平台的介绍 1492094