Utility and Comparative Performance of Current Artificial Intelligence Large Language Models as Postoperative Medical Support Chatbots in Aesthetic Surgery

医学 心理干预 杠杆(统计) 鉴别诊断 外科 病史 介绍(产科) 精神科 人工智能 病理 计算机科学
作者
Jad Abi‐Rafeh,Nader Henry,Hong Hao Xu,Brian Bassiri-Tehrani,Adel Arezki,Roy Kazan,Mirko S. Gilardino,Foad Nahai
出处
期刊:Aesthetic Surgery Journal [Oxford University Press]
卷期号:44 (8): 889-896 被引量:3
标识
DOI:10.1093/asj/sjae025
摘要

Abstract Background Large language models (LLMs) have revolutionized the way plastic surgeons and their patients can access and leverage artificial intelligence (AI). Objectives The present study aims to compare the performance of 2 current publicly available and patient-accessible LLMs in the potential application of AI as postoperative medical support chatbots in an aesthetic surgeon's practice. Methods Twenty-two simulated postoperative patient presentations following aesthetic breast plastic surgery were devised and expert-validated. Complications varied in their latency within the postoperative period, as well as urgency of required medical attention. In response to each patient-reported presentation, Open AI's ChatGPT and Google's Bard, in their unmodified and freely available versions, were objectively assessed for their comparative accuracy in generating an appropriate differential diagnosis, most-likely diagnosis, suggested medical disposition, treatments or interventions to begin from home, and/or red flag signs/symptoms indicating deterioration. Results ChatGPT cumulatively and significantly outperformed Bard across all objective assessment metrics examined (66% vs 55%, respectively; P < .05). Accuracy in generating an appropriate differential diagnosis was 61% for ChatGPT vs 57% for Bard (P = .45). ChatGPT asked an average of 9.2 questions on history vs Bard’s 6.8 questions (P < .001), with accuracies of 91% vs 68% reporting the most-likely diagnosis, respectively (P < .01). Appropriate medical dispositions were suggested with accuracies of 50% by ChatGPT vs 41% by Bard (P = .40); appropriate home interventions/treatments with accuracies of 59% vs 55% (P = .94), and red flag signs/symptoms with accuracies of 79% vs 54% (P < .01), respectively. Detailed and comparative performance breakdowns according to complication latency and urgency are presented. Conclusions ChatGPT represents the superior LLM for the potential application of AI technology in postoperative medical support chatbots. Imperfect performance and limitations discussed may guide the necessary refinement to facilitate adoption.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
qwe发布了新的文献求助10
1秒前
海正发布了新的文献求助10
1秒前
Skye完成签到,获得积分10
3秒前
gao发布了新的文献求助10
4秒前
7秒前
执着访文完成签到,获得积分10
9秒前
科目三应助杭谷波采纳,获得10
9秒前
11秒前
吴宝健发布了新的文献求助10
11秒前
林临林应助SYSUer采纳,获得10
11秒前
炙热的雪糕完成签到,获得积分10
12秒前
15秒前
18秒前
18秒前
19秒前
21秒前
迅速曼冬发布了新的文献求助10
21秒前
笑点低易真完成签到,获得积分10
21秒前
elgar612发布了新的文献求助30
22秒前
24秒前
英俊的铭应助海岢采纳,获得10
25秒前
AGuang应助小手揣兜采纳,获得10
28秒前
香蕉觅云应助Liz采纳,获得10
30秒前
32秒前
量子星尘发布了新的文献求助10
33秒前
songsongsong完成签到,获得积分20
35秒前
科研通AI2S应助siqi采纳,获得30
36秒前
叶y应助卿18900681672采纳,获得10
36秒前
俏皮诺言发布了新的文献求助10
38秒前
852应助杭谷波采纳,获得10
38秒前
小手揣兜完成签到,获得积分10
39秒前
RAmos_1982完成签到,获得积分10
39秒前
cyskdsn完成签到 ,获得积分10
39秒前
tree完成签到,获得积分10
40秒前
hbhbj完成签到,获得积分10
44秒前
44秒前
细腻老五发布了新的文献求助10
45秒前
45秒前
竹林听风完成签到,获得积分20
45秒前
45秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959309
求助须知:如何正确求助?哪些是违规求助? 3505589
关于积分的说明 11124738
捐赠科研通 3237345
什么是DOI,文献DOI怎么找? 1789116
邀请新用户注册赠送积分活动 871544
科研通“疑难数据库(出版商)”最低求助积分说明 802844