已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Utility and Comparative Performance of Current Artificial Intelligence Large Language Models as Postoperative Medical Support Chatbots in Aesthetic Surgery

医学 心理干预 杠杆(统计) 鉴别诊断 外科 病史 介绍(产科) 精神科 人工智能 病理 计算机科学
作者
Jad Abi‐Rafeh,Nader Henry,Hong Hao Xu,Brian Bassiri-Tehrani,Adel Arezki,Roy Kazan,Mirko S. Gilardino,Foad Nahai
出处
期刊:Aesthetic Surgery Journal [Oxford University Press]
卷期号:44 (8): 889-896 被引量:3
标识
DOI:10.1093/asj/sjae025
摘要

Abstract Background Large language models (LLMs) have revolutionized the way plastic surgeons and their patients can access and leverage artificial intelligence (AI). Objectives The present study aims to compare the performance of 2 current publicly available and patient-accessible LLMs in the potential application of AI as postoperative medical support chatbots in an aesthetic surgeon's practice. Methods Twenty-two simulated postoperative patient presentations following aesthetic breast plastic surgery were devised and expert-validated. Complications varied in their latency within the postoperative period, as well as urgency of required medical attention. In response to each patient-reported presentation, Open AI's ChatGPT and Google's Bard, in their unmodified and freely available versions, were objectively assessed for their comparative accuracy in generating an appropriate differential diagnosis, most-likely diagnosis, suggested medical disposition, treatments or interventions to begin from home, and/or red flag signs/symptoms indicating deterioration. Results ChatGPT cumulatively and significantly outperformed Bard across all objective assessment metrics examined (66% vs 55%, respectively; P < .05). Accuracy in generating an appropriate differential diagnosis was 61% for ChatGPT vs 57% for Bard (P = .45). ChatGPT asked an average of 9.2 questions on history vs Bard’s 6.8 questions (P < .001), with accuracies of 91% vs 68% reporting the most-likely diagnosis, respectively (P < .01). Appropriate medical dispositions were suggested with accuracies of 50% by ChatGPT vs 41% by Bard (P = .40); appropriate home interventions/treatments with accuracies of 59% vs 55% (P = .94), and red flag signs/symptoms with accuracies of 79% vs 54% (P < .01), respectively. Detailed and comparative performance breakdowns according to complication latency and urgency are presented. Conclusions ChatGPT represents the superior LLM for the potential application of AI technology in postoperative medical support chatbots. Imperfect performance and limitations discussed may guide the necessary refinement to facilitate adoption.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
贝妮戴塔发布了新的文献求助20
1秒前
LLL发布了新的文献求助10
1秒前
star应助小么小采纳,获得10
1秒前
丘比特应助夏依瑶采纳,获得30
2秒前
乙酰水杨酸完成签到,获得积分10
3秒前
TIPHA发布了新的文献求助10
5秒前
6秒前
9秒前
蒋蒋蒋蒋发布了新的文献求助10
9秒前
幸福的含灵完成签到,获得积分10
9秒前
11秒前
深情安青应助陈益凡采纳,获得10
11秒前
11秒前
linda完成签到,获得积分10
11秒前
桐桐应助完美外绣采纳,获得10
12秒前
12秒前
充电宝应助TIPHA采纳,获得10
12秒前
大个应助XIAO QIANG采纳,获得30
12秒前
14秒前
15秒前
万能图书馆应助烟消云散采纳,获得10
16秒前
linda发布了新的文献求助10
16秒前
青年才俊发布了新的文献求助10
17秒前
爆米花应助麦芽采纳,获得10
17秒前
19秒前
20秒前
jasonjiang完成签到 ,获得积分0
21秒前
22秒前
23秒前
Q哈哈哈发布了新的文献求助10
24秒前
酷波er应助linda采纳,获得30
24秒前
25秒前
WXM发布了新的文献求助10
25秒前
xcc完成签到 ,获得积分10
25秒前
Xieyijing应助Alex采纳,获得10
26秒前
27秒前
热心一江发布了新的文献求助10
28秒前
28秒前
yangcong发布了新的文献求助10
28秒前
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
Thomas Hobbes' Mechanical Conception of Nature 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5090007
求助须知:如何正确求助?哪些是违规求助? 4304665
关于积分的说明 13414601
捐赠科研通 4130315
什么是DOI,文献DOI怎么找? 2262199
邀请新用户注册赠送积分活动 1266136
关于科研通互助平台的介绍 1200822