尖峰神经网络
神经形态工程学
强化学习
计算机科学
人口
人工智能
任务(项目管理)
领域(数学分析)
学习规律
维数(图论)
人工神经网络
工程类
数学分析
人口学
数学
系统工程
社会学
纯数学
作者
Ding Chen,Peixi Peng,Tiejun Huang,Yonghong Tian
出处
期刊:IEEE transactions on neural networks and learning systems
[Institute of Electrical and Electronics Engineers]
日期:2024-01-01
卷期号:: 1-13
标识
DOI:10.1109/tnnls.2024.3352653
摘要
With the help of special neuromorphic hardware, spiking neural networks (SNNs) are expected to realize artificial intelligence (AI) with less energy consumption. It provides a promising energy-efficient way for realistic control tasks by combining SNNs with deep reinforcement learning (DRL). In this article, we focus on the task where the agent needs to learn multidimensional deterministic policies to control, which is very common in real scenarios. Recently, the surrogate gradient method has been utilized for training multilayer SNNs, which allows SNNs to achieve comparable performance with the corresponding deep networks in this task. Most existing spike-based reinforcement learning (RL) methods take the firing rate as the output of SNNs, and convert it to represent continuous action space (i.e., the deterministic policy) through a fully connected (FC) layer. However, the decimal characteristic of the firing rate brings the floating-point matrix operations to the FC layer, making the whole SNN unable to deploy on the neuromorphic hardware directly. To develop a fully spiking actor network (SAN) without any floating-point matrix operations, we draw inspiration from the nonspiking interneurons found in insects and employ the membrane voltage of the nonspiking neurons to represent the action. Before the nonspiking neurons, multiple population neurons are introduced to decode different dimensions of actions. Since each population is used to decode a dimension of action, we argue that the neurons in each population should be connected in time domain and space domain. Hence, the intralayer connections are used in output populations to enhance the representation capacity. This mechanism exists extensively in animals and has been demonstrated effectively. Finally, we propose a fully SAN with intralayer connections (ILC-SAN). Extensive experimental results demonstrate that the proposed method outperforms the state-of-the-art performance on continuous control tasks from OpenAI gym. Moreover, we estimate the theoretical energy consumption when deploying ILC-SAN on neuromorphic chips to illustrate its high energy efficiency.
科研通智能强力驱动
Strongly Powered by AbleSci AI