亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Fully Spiking Actor Network With Intralayer Connections for Reinforcement Learning

尖峰神经网络 神经形态工程学 强化学习 计算机科学 人口 人工智能 任务(项目管理) 领域(数学分析) 学习规律 维数(图论) 人工神经网络 工程类 数学分析 人口学 数学 系统工程 社会学 纯数学
作者
Ding Chen,Peixi Peng,Tiejun Huang,Yonghong Tian
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-13
标识
DOI:10.1109/tnnls.2024.3352653
摘要

With the help of special neuromorphic hardware, spiking neural networks (SNNs) are expected to realize artificial intelligence (AI) with less energy consumption. It provides a promising energy-efficient way for realistic control tasks by combining SNNs with deep reinforcement learning (DRL). In this article, we focus on the task where the agent needs to learn multidimensional deterministic policies to control, which is very common in real scenarios. Recently, the surrogate gradient method has been utilized for training multilayer SNNs, which allows SNNs to achieve comparable performance with the corresponding deep networks in this task. Most existing spike-based reinforcement learning (RL) methods take the firing rate as the output of SNNs, and convert it to represent continuous action space (i.e., the deterministic policy) through a fully connected (FC) layer. However, the decimal characteristic of the firing rate brings the floating-point matrix operations to the FC layer, making the whole SNN unable to deploy on the neuromorphic hardware directly. To develop a fully spiking actor network (SAN) without any floating-point matrix operations, we draw inspiration from the nonspiking interneurons found in insects and employ the membrane voltage of the nonspiking neurons to represent the action. Before the nonspiking neurons, multiple population neurons are introduced to decode different dimensions of actions. Since each population is used to decode a dimension of action, we argue that the neurons in each population should be connected in time domain and space domain. Hence, the intralayer connections are used in output populations to enhance the representation capacity. This mechanism exists extensively in animals and has been demonstrated effectively. Finally, we propose a fully SAN with intralayer connections (ILC-SAN). Extensive experimental results demonstrate that the proposed method outperforms the state-of-the-art performance on continuous control tasks from OpenAI gym. Moreover, we estimate the theoretical energy consumption when deploying ILC-SAN on neuromorphic chips to illustrate its high energy efficiency.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Owen应助zz采纳,获得10
1分钟前
小二郎应助科研通管家采纳,获得30
2分钟前
LIVE完成签到,获得积分10
2分钟前
3分钟前
4分钟前
lizhang发布了新的文献求助10
4分钟前
hilygogo完成签到,获得积分10
4分钟前
露露完成签到,获得积分10
7分钟前
houha233发布了新的文献求助10
7分钟前
7分钟前
宁异勿同完成签到,获得积分10
8分钟前
8分钟前
科研通AI2S应助踏实的芸遥采纳,获得30
8分钟前
9分钟前
9分钟前
poki完成签到 ,获得积分10
9分钟前
zz发布了新的文献求助10
9分钟前
9分钟前
9分钟前
houha233完成签到,获得积分10
9分钟前
10分钟前
xuhanghang发布了新的文献求助10
10分钟前
空曲完成签到 ,获得积分10
13分钟前
13分钟前
大模型应助zz采纳,获得10
13分钟前
木森ab发布了新的文献求助10
13分钟前
JamesPei应助木森ab采纳,获得10
13分钟前
木森ab完成签到,获得积分20
14分钟前
朱朱完成签到,获得积分10
14分钟前
大个应助朱朱采纳,获得10
14分钟前
April完成签到 ,获得积分10
15分钟前
古炮完成签到 ,获得积分10
18分钟前
香蕉觅云应助Zephyr采纳,获得30
18分钟前
19分钟前
hhhhhhhhhh完成签到 ,获得积分10
20分钟前
小巧的柏柳完成签到 ,获得积分10
20分钟前
Setlla完成签到 ,获得积分10
20分钟前
Aries完成签到 ,获得积分10
20分钟前
研友_VZG7GZ应助lik采纳,获得10
21分钟前
Zephyr发布了新的文献求助30
21分钟前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Handbook of Qualitative Cross-Cultural Research Methods 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3139600
求助须知:如何正确求助?哪些是违规求助? 2790479
关于积分的说明 7795340
捐赠科研通 2446926
什么是DOI,文献DOI怎么找? 1301511
科研通“疑难数据库(出版商)”最低求助积分说明 626259
版权声明 601176