Fully Spiking Actor Network With Intralayer Connections for Reinforcement Learning

尖峰神经网络 神经形态工程学 强化学习 计算机科学 人口 人工智能 任务(项目管理) 领域(数学分析) 学习规律 维数(图论) 人工神经网络 工程类 人口学 社会学 数学分析 系统工程 纯数学 数学
作者
Ding Chen,Peixi Peng,Tiejun Huang,Yonghong Tian
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-13
标识
DOI:10.1109/tnnls.2024.3352653
摘要

With the help of special neuromorphic hardware, spiking neural networks (SNNs) are expected to realize artificial intelligence (AI) with less energy consumption. It provides a promising energy-efficient way for realistic control tasks by combining SNNs with deep reinforcement learning (DRL). In this article, we focus on the task where the agent needs to learn multidimensional deterministic policies to control, which is very common in real scenarios. Recently, the surrogate gradient method has been utilized for training multilayer SNNs, which allows SNNs to achieve comparable performance with the corresponding deep networks in this task. Most existing spike-based reinforcement learning (RL) methods take the firing rate as the output of SNNs, and convert it to represent continuous action space (i.e., the deterministic policy) through a fully connected (FC) layer. However, the decimal characteristic of the firing rate brings the floating-point matrix operations to the FC layer, making the whole SNN unable to deploy on the neuromorphic hardware directly. To develop a fully spiking actor network (SAN) without any floating-point matrix operations, we draw inspiration from the nonspiking interneurons found in insects and employ the membrane voltage of the nonspiking neurons to represent the action. Before the nonspiking neurons, multiple population neurons are introduced to decode different dimensions of actions. Since each population is used to decode a dimension of action, we argue that the neurons in each population should be connected in time domain and space domain. Hence, the intralayer connections are used in output populations to enhance the representation capacity. This mechanism exists extensively in animals and has been demonstrated effectively. Finally, we propose a fully SAN with intralayer connections (ILC-SAN). Extensive experimental results demonstrate that the proposed method outperforms the state-of-the-art performance on continuous control tasks from OpenAI gym. Moreover, we estimate the theoretical energy consumption when deploying ILC-SAN on neuromorphic chips to illustrate its high energy efficiency.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
aka鱼鱼鱼发布了新的文献求助10
刚刚
刚刚
yyn19n完成签到,获得积分10
1秒前
2秒前
量子星尘发布了新的文献求助10
3秒前
momo发布了新的文献求助20
4秒前
Candy2024发布了新的文献求助200
5秒前
烨无殇发布了新的文献求助10
6秒前
凶狠的绿兰完成签到 ,获得积分10
8秒前
lucfer发布了新的文献求助10
8秒前
勤劳画笔完成签到,获得积分20
9秒前
热心如之完成签到,获得积分10
11秒前
ccob完成签到,获得积分10
12秒前
爆米花应助Chaimengdi采纳,获得10
13秒前
勤劳画笔发布了新的文献求助10
13秒前
快乐星球完成签到 ,获得积分10
13秒前
15秒前
15秒前
完美世界应助YXYWZMSZ采纳,获得10
17秒前
123发布了新的文献求助10
17秒前
汉堡包应助叽叽采纳,获得10
17秒前
17秒前
迷路幻柏完成签到,获得积分10
18秒前
领导范儿应助qcwindchasing采纳,获得10
18秒前
大胆的渊思完成签到 ,获得积分10
19秒前
SciGPT应助chhe采纳,获得10
19秒前
幸福的襄完成签到,获得积分10
19秒前
执着访文完成签到,获得积分10
19秒前
介入小孙发布了新的文献求助10
20秒前
九九发布了新的文献求助30
20秒前
charles_dong完成签到,获得积分10
20秒前
20秒前
quzhenzxxx完成签到 ,获得积分10
21秒前
21秒前
量子星尘发布了新的文献求助10
22秒前
Nic关闭了Nic文献求助
22秒前
taoliu发布了新的文献求助10
22秒前
小叮当完成签到,获得积分10
22秒前
23秒前
楚眠完成签到,获得积分10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
Methane Conversion Routes 500
Textbook of Neonatal Resuscitation ® 500
Why Neuroscience Matters in the Classroom 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5048920
求助须知:如何正确求助?哪些是违规求助? 4277164
关于积分的说明 13332673
捐赠科研通 4091710
什么是DOI,文献DOI怎么找? 2239234
邀请新用户注册赠送积分活动 1246058
关于科研通互助平台的介绍 1174695