Effect of reservoir heterogeneity on well placement prediction in CO2-EOR projects using machine learning surrogate models: Benchmarking of boosting-based algorithms

Boosting(机器学习) 梯度升压 提高采收率 标杆管理 温室气体 计算机科学 算法 阿达布思 储层模拟 机器学习 同种类的 石油工程 随机森林 人工智能 环境科学 工程类 数学 地质学 海洋学 营销 支持向量机 业务 组合数学
作者
Tanin Esfandi,Saeid Sadeghnejad,Arezou Jafari
标识
DOI:10.1016/j.geoen.2023.212564
摘要

Rising Carbon Dioxide (CO2) levels from human activities are driving climate change. Carbon capture and storage (CCS) during enhanced oil recovery (EOR) in underground reservoirs offer both environmental and economic benefits. This method boosts oil production, cuts greenhouse gas emissions, and supports sustainable energy. Precise well placement in CO2-EOR is a crucial task for effective oil displacement, but traditional reservoir simulators are costly. This study explores and compares boosting algorithms, as fast surrogate models, to achieve accurate well placement during CO2-EOR in light oil carbonate reservoirs. The research considers various reservoir scenarios with different geological heterogeneity levels (i.e., homogeneous, moderately heterogeneous, and highly heterogeneous reservoirs). Various parameters, such as injection and production well locations, the distance between production and injection wells in an inverted five-spot pattern, pattern angle, and injection and production rates are explored using a compositional reservoir simulator to assess their impact on the well placement problem. A comprehensive analysis of various boosting algorithms, including AdaBoost, CatBoost, Gradient Boosting, LightGBM, and XGBoost is performed using the simulated dataset to assess their efficacy. The results demonstrate that LightGBM outperformed the other algorithms with the lowest Mean Absolute Error and Root Mean Square Error of 115.3 × 106 $ and 188.2 × 106 $, respectively. Additionally, it demonstrates exceptional speed, averaging 3 to 8 times faster than other boosting algorithms in the three reservoir scenarios. This superior performance coupled with its efficient runtime makes LightGBM the ideal choice for the study objectives. Moreover, the mass balance approach highlights the significant CO2 storage efficiency, emphasizing the effectiveness of CO2-EOR in storing CO2 in underground heterogeneous reservoirs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
隐形曼青应助sunyanghu369采纳,获得10
2秒前
3秒前
4秒前
充电宝应助科研通管家采纳,获得10
5秒前
orixero应助科研通管家采纳,获得10
5秒前
Fupup应助科研通管家采纳,获得10
5秒前
香蕉觅云应助科研通管家采纳,获得10
5秒前
Fupup应助科研通管家采纳,获得10
5秒前
Akim应助科研通管家采纳,获得10
5秒前
香蕉觅云应助科研通管家采纳,获得10
5秒前
所所应助科研通管家采纳,获得10
5秒前
5秒前
巨噬细胞A完成签到,获得积分10
6秒前
qiuling发布了新的文献求助30
6秒前
7秒前
Charity完成签到,获得积分20
7秒前
kaidi发布了新的文献求助10
8秒前
Lucy发布了新的文献求助10
9秒前
ssss发布了新的文献求助10
9秒前
fabulousthee发布了新的文献求助10
11秒前
羊咩咩完成签到 ,获得积分10
12秒前
12秒前
lingmuhuahua完成签到,获得积分10
13秒前
DIDIDI发布了新的文献求助30
13秒前
浪客完成签到 ,获得积分10
13秒前
花花花花完成签到,获得积分10
14秒前
小卡啦完成签到,获得积分10
15秒前
catch完成签到,获得积分10
15秒前
ambitiouslu发布了新的文献求助30
16秒前
RC_Wang给复杂的保温杯的求助进行了留言
16秒前
赘婿应助大鱼采纳,获得10
17秒前
pluto应助hyjcnhyj采纳,获得10
20秒前
zho发布了新的文献求助10
20秒前
酷波er应助小卡啦采纳,获得10
23秒前
英俊的铭应助Lanyiyang采纳,获得10
25秒前
Lucy完成签到,获得积分10
26秒前
小杨发布了新的文献求助10
26秒前
28秒前
Joleneli100发布了新的文献求助10
28秒前
29秒前
高分求助中
Востребованный временем 2500
Les Mantodea de Guyane 1000
Very-high-order BVD Schemes Using β-variable THINC Method 950
Field Guide to Insects of South Africa 660
The Three Stars Each: The Astrolabes and Related Texts 500
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
Product Class 33: N-Arylhydroxylamines 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3387091
求助须知:如何正确求助?哪些是违规求助? 3000056
关于积分的说明 8788679
捐赠科研通 2685815
什么是DOI,文献DOI怎么找? 1471234
科研通“疑难数据库(出版商)”最低求助积分说明 680200
邀请新用户注册赠送积分活动 672872