Collaborative Cross-Network Embedding Framework for Network Alignment

嵌入 计算机科学 匹配(统计) 稳健性(进化) 理论计算机科学 数据挖掘 分布式计算 人工智能 数学 生物化学 统计 化学 基因
作者
Haifeng Zhang,Guojing Ren,Xiao Ding,Li Zhou,Xingyi Zhang
出处
期刊:IEEE Transactions on Network Science and Engineering [Institute of Electrical and Electronics Engineers]
卷期号:11 (3): 2989-3001 被引量:2
标识
DOI:10.1109/tnse.2024.3355479
摘要

Network alignment aims to identify the corresponding nodes belonging to the same entity across different networks, which is a fundamental task in various applications. Existing embedding-based approaches usually involve two stages, namely embedding and matching. The embedding stage conducts network embedding on each network to capture the primary structural regularity. In the matching stage, a mapping function is built to project the learned embeddings to the same latent space. However, these approaches typically encounter two challenges: (1) the difficulty of unifying the elusive embedding spaces to the same latent space; (2) the difficulty of distinguishing the real anchor nodes from their neighbors, resulting in the confounding matching problem. To address these challenges, we present the Collaborative Cross-Network Embedding (CCNE) framework in this paper. This framework provides a collaborative and straightforward paradigm to better unify the two networks to the same latent space by preserving both intra- and inter-network structural features, without the need for a carefully designed mapping function. Meanwhile, a hard negative sampling strategy is adopted to distinguish anchor nodes from their sampled neighbors. Furthermore, an iterative CCNE is proposed to alleviate the scarcity of observed anchor links. Extensive experiments on real social networks demonstrate that the proposed collaborative framework outperforms current embedding-matching methods in terms of accuracy, robustness as well as compatibility.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xuxingjie发布了新的文献求助10
刚刚
大个应助Elaine采纳,获得10
1秒前
mango发布了新的文献求助10
2秒前
研友_nEWaD8完成签到,获得积分10
3秒前
zzz完成签到,获得积分10
3秒前
sweets完成签到,获得积分10
5秒前
LL发布了新的文献求助30
5秒前
5秒前
7秒前
www完成签到,获得积分10
8秒前
9秒前
9秒前
222发布了新的文献求助10
9秒前
黄量杰成发布了新的文献求助10
10秒前
11秒前
11秒前
sansan完成签到 ,获得积分10
12秒前
manru发布了新的文献求助10
12秒前
12秒前
13秒前
ASIS完成签到,获得积分10
13秒前
刘祥发布了新的文献求助10
13秒前
虚拟的柠檬完成签到,获得积分10
14秒前
15秒前
run发布了新的文献求助50
16秒前
赵乂发布了新的文献求助10
16秒前
量子星尘发布了新的文献求助10
16秒前
lyt发布了新的文献求助10
17秒前
yunyueqixun完成签到 ,获得积分10
17秒前
倪侃发布了新的文献求助10
17秒前
时567完成签到,获得积分10
17秒前
manru完成签到,获得积分10
17秒前
18秒前
sure发布了新的文献求助10
18秒前
18秒前
19秒前
20秒前
20秒前
小郑不睡觉完成签到 ,获得积分10
20秒前
20秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
AASHTO LRFD Bridge Design Specifications (10th Edition) with 2025 Errata 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5125089
求助须知:如何正确求助?哪些是违规求助? 4329088
关于积分的说明 13489719
捐赠科研通 4163770
什么是DOI,文献DOI怎么找? 2282542
邀请新用户注册赠送积分活动 1283707
关于科研通互助平台的介绍 1222981