清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Collaborative Cross-Network Embedding Framework for Network Alignment

嵌入 计算机科学 匹配(统计) 稳健性(进化) 理论计算机科学 数据挖掘 分布式计算 人工智能 数学 生物化学 统计 化学 基因
作者
Haifeng Zhang,Guojing Ren,Xiao Ding,Li Zhou,Xingyi Zhang
出处
期刊:IEEE Transactions on Network Science and Engineering [Institute of Electrical and Electronics Engineers]
卷期号:11 (3): 2989-3001 被引量:2
标识
DOI:10.1109/tnse.2024.3355479
摘要

Network alignment aims to identify the corresponding nodes belonging to the same entity across different networks, which is a fundamental task in various applications. Existing embedding-based approaches usually involve two stages, namely embedding and matching. The embedding stage conducts network embedding on each network to capture the primary structural regularity. In the matching stage, a mapping function is built to project the learned embeddings to the same latent space. However, these approaches typically encounter two challenges: (1) the difficulty of unifying the elusive embedding spaces to the same latent space; (2) the difficulty of distinguishing the real anchor nodes from their neighbors, resulting in the confounding matching problem. To address these challenges, we present the Collaborative Cross-Network Embedding (CCNE) framework in this paper. This framework provides a collaborative and straightforward paradigm to better unify the two networks to the same latent space by preserving both intra- and inter-network structural features, without the need for a carefully designed mapping function. Meanwhile, a hard negative sampling strategy is adopted to distinguish anchor nodes from their sampled neighbors. Furthermore, an iterative CCNE is proposed to alleviate the scarcity of observed anchor links. Extensive experiments on real social networks demonstrate that the proposed collaborative framework outperforms current embedding-matching methods in terms of accuracy, robustness as well as compatibility.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Lyw完成签到 ,获得积分10
4秒前
王木义发布了新的文献求助10
7秒前
19秒前
20秒前
cheng发布了新的文献求助10
23秒前
32秒前
orixero应助cheng采纳,获得10
55秒前
poki完成签到 ,获得积分10
57秒前
jintian完成签到 ,获得积分10
1分钟前
1分钟前
有人应助科研通管家采纳,获得10
1分钟前
有人应助科研通管家采纳,获得10
1分钟前
有人应助科研通管家采纳,获得10
1分钟前
有人应助科研通管家采纳,获得10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
有人应助科研通管家采纳,获得10
1分钟前
有人应助科研通管家采纳,获得10
1分钟前
飞云完成签到 ,获得积分10
1分钟前
可乐完成签到 ,获得积分10
2分钟前
2分钟前
cheng发布了新的文献求助10
2分钟前
ycp完成签到,获得积分10
2分钟前
思源应助cheng采纳,获得10
2分钟前
好难下载完成签到,获得积分10
3分钟前
有人应助科研通管家采纳,获得10
3分钟前
有人应助科研通管家采纳,获得10
3分钟前
有人应助科研通管家采纳,获得10
3分钟前
科研通AI6应助科研通管家采纳,获得10
3分钟前
科研通AI6应助科研通管家采纳,获得10
3分钟前
NexusExplorer应助科研通管家采纳,获得10
3分钟前
科研通AI6应助科研通管家采纳,获得10
3分钟前
科研通AI6应助科研通管家采纳,获得10
3分钟前
狂野的含烟完成签到 ,获得积分10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
科研通AI6.1应助michels采纳,获得10
3分钟前
科研通AI6.1应助小祝采纳,获得10
3分钟前
王玉完成签到 ,获得积分10
4分钟前
GMEd1son完成签到,获得积分10
4分钟前
科研狗的春天完成签到 ,获得积分10
4分钟前
欣喜的香菱完成签到 ,获得积分10
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Human Embryology and Developmental Biology 7th Edition 2000
The Developing Human: Clinically Oriented Embryology 12th Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
Ägyptische Geschichte der 21.–30. Dynastie 1520
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5739990
求助须知:如何正确求助?哪些是违规求助? 5392161
关于积分的说明 15340225
捐赠科研通 4882305
什么是DOI,文献DOI怎么找? 2624346
邀请新用户注册赠送积分活动 1573017
关于科研通互助平台的介绍 1529966