清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Collaborative Cross-Network Embedding Framework for Network Alignment

嵌入 计算机科学 匹配(统计) 稳健性(进化) 理论计算机科学 数据挖掘 分布式计算 人工智能 数学 生物化学 统计 化学 基因
作者
Haifeng Zhang,Guojing Ren,Xiao Ding,Li Zhou,Xingyi Zhang
出处
期刊:IEEE Transactions on Network Science and Engineering [Institute of Electrical and Electronics Engineers]
卷期号:11 (3): 2989-3001 被引量:2
标识
DOI:10.1109/tnse.2024.3355479
摘要

Network alignment aims to identify the corresponding nodes belonging to the same entity across different networks, which is a fundamental task in various applications. Existing embedding-based approaches usually involve two stages, namely embedding and matching. The embedding stage conducts network embedding on each network to capture the primary structural regularity. In the matching stage, a mapping function is built to project the learned embeddings to the same latent space. However, these approaches typically encounter two challenges: (1) the difficulty of unifying the elusive embedding spaces to the same latent space; (2) the difficulty of distinguishing the real anchor nodes from their neighbors, resulting in the confounding matching problem. To address these challenges, we present the Collaborative Cross-Network Embedding (CCNE) framework in this paper. This framework provides a collaborative and straightforward paradigm to better unify the two networks to the same latent space by preserving both intra- and inter-network structural features, without the need for a carefully designed mapping function. Meanwhile, a hard negative sampling strategy is adopted to distinguish anchor nodes from their sampled neighbors. Furthermore, an iterative CCNE is proposed to alleviate the scarcity of observed anchor links. Extensive experiments on real social networks demonstrate that the proposed collaborative framework outperforms current embedding-matching methods in terms of accuracy, robustness as well as compatibility.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助科研通管家采纳,获得10
39秒前
忘忧Aquarius完成签到,获得积分10
47秒前
高高珩完成签到 ,获得积分10
56秒前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
1分钟前
1分钟前
TEMPO发布了新的文献求助10
2分钟前
lod完成签到,获得积分10
2分钟前
研友_nxw2xL完成签到,获得积分10
2分钟前
如歌完成签到,获得积分10
2分钟前
2分钟前
jarrykim完成签到,获得积分10
3分钟前
ding应助Xiu采纳,获得10
3分钟前
马桶盖盖子完成签到 ,获得积分10
3分钟前
LINDENG2004完成签到 ,获得积分10
3分钟前
3分钟前
Xiu发布了新的文献求助10
3分钟前
3分钟前
西瓜发布了新的文献求助10
3分钟前
清秋夜露白完成签到,获得积分10
3分钟前
NexusExplorer应助Xiu采纳,获得10
3分钟前
4分钟前
Xiu完成签到,获得积分10
4分钟前
Xiu发布了新的文献求助10
4分钟前
Mine完成签到,获得积分10
4分钟前
蝎子莱莱xth完成签到,获得积分10
4分钟前
氢锂钠钾铷铯钫完成签到,获得积分10
4分钟前
samchen完成签到,获得积分10
4分钟前
Square完成签到,获得积分10
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
4分钟前
量子星尘发布了新的文献求助10
5分钟前
Jasper应助懦弱的问芙采纳,获得10
5分钟前
小烦同学完成签到,获得积分10
5分钟前
披着羊皮的狼完成签到 ,获得积分10
5分钟前
6分钟前
科研通AI6应助科研通管家采纳,获得10
6分钟前
大模型应助科研通管家采纳,获得10
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5715110
求助须知:如何正确求助?哪些是违规求助? 5230494
关于积分的说明 15274024
捐赠科研通 4866165
什么是DOI,文献DOI怎么找? 2612734
邀请新用户注册赠送积分活动 1562936
关于科研通互助平台的介绍 1520260