已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Collaborative Cross-Network Embedding Framework for Network Alignment

嵌入 计算机科学 匹配(统计) 稳健性(进化) 理论计算机科学 数据挖掘 分布式计算 人工智能 数学 生物化学 统计 化学 基因
作者
Haifeng Zhang,Guojing Ren,Xiao Ding,Li Zhou,Xingyi Zhang
出处
期刊:IEEE Transactions on Network Science and Engineering [Institute of Electrical and Electronics Engineers]
卷期号:11 (3): 2989-3001 被引量:2
标识
DOI:10.1109/tnse.2024.3355479
摘要

Network alignment aims to identify the corresponding nodes belonging to the same entity across different networks, which is a fundamental task in various applications. Existing embedding-based approaches usually involve two stages, namely embedding and matching. The embedding stage conducts network embedding on each network to capture the primary structural regularity. In the matching stage, a mapping function is built to project the learned embeddings to the same latent space. However, these approaches typically encounter two challenges: (1) the difficulty of unifying the elusive embedding spaces to the same latent space; (2) the difficulty of distinguishing the real anchor nodes from their neighbors, resulting in the confounding matching problem. To address these challenges, we present the Collaborative Cross-Network Embedding (CCNE) framework in this paper. This framework provides a collaborative and straightforward paradigm to better unify the two networks to the same latent space by preserving both intra- and inter-network structural features, without the need for a carefully designed mapping function. Meanwhile, a hard negative sampling strategy is adopted to distinguish anchor nodes from their sampled neighbors. Furthermore, an iterative CCNE is proposed to alleviate the scarcity of observed anchor links. Extensive experiments on real social networks demonstrate that the proposed collaborative framework outperforms current embedding-matching methods in terms of accuracy, robustness as well as compatibility.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Sususu完成签到 ,获得积分10
刚刚
Sylvia发布了新的文献求助30
刚刚
深情安青应助西瑾凉采纳,获得10
刚刚
1秒前
1秒前
1秒前
打打应助健康的涔采纳,获得10
2秒前
子小发布了新的文献求助10
2秒前
2秒前
3秒前
temp发布了新的文献求助10
3秒前
桐桐应助哈哈哈采纳,获得10
3秒前
吃梨小手完成签到,获得积分10
4秒前
虚幻天空完成签到,获得积分10
5秒前
5秒前
隐形曼青应助SS采纳,获得10
5秒前
yilan发布了新的文献求助10
6秒前
6秒前
明朗发布了新的文献求助10
6秒前
zmnzmnzmn发布了新的文献求助10
6秒前
刻苦的映易完成签到,获得积分10
6秒前
9秒前
白纸发布了新的文献求助10
10秒前
10秒前
清清子衿发布了新的文献求助10
11秒前
小马甲应助子小采纳,获得10
12秒前
李健应助vvA11采纳,获得10
13秒前
充电宝应助任性糖豆采纳,获得10
13秒前
15秒前
Pepsi完成签到,获得积分10
16秒前
18秒前
19秒前
19秒前
bkagyin应助等等采纳,获得10
21秒前
抹茶木木完成签到,获得积分10
22秒前
搜集达人应助和谐悟空采纳,获得10
22秒前
科研通AI6应助悬铃木采纳,获得30
22秒前
研友_8Kedgn发布了新的文献求助10
23秒前
萧衡完成签到 ,获得积分10
24秒前
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5589987
求助须知:如何正确求助?哪些是违规求助? 4674459
关于积分的说明 14793918
捐赠科研通 4629628
什么是DOI,文献DOI怎么找? 2532486
邀请新用户注册赠送积分活动 1501169
关于科研通互助平台的介绍 1468533