Collaborative Cross-Network Embedding Framework for Network Alignment

嵌入 计算机科学 匹配(统计) 稳健性(进化) 理论计算机科学 数据挖掘 分布式计算 人工智能 数学 生物化学 统计 化学 基因
作者
Haifeng Zhang,Guojing Ren,Xiao Ding,Li Zhou,Xingyi Zhang
出处
期刊:IEEE Transactions on Network Science and Engineering [Institute of Electrical and Electronics Engineers]
卷期号:11 (3): 2989-3001 被引量:2
标识
DOI:10.1109/tnse.2024.3355479
摘要

Network alignment aims to identify the corresponding nodes belonging to the same entity across different networks, which is a fundamental task in various applications. Existing embedding-based approaches usually involve two stages, namely embedding and matching. The embedding stage conducts network embedding on each network to capture the primary structural regularity. In the matching stage, a mapping function is built to project the learned embeddings to the same latent space. However, these approaches typically encounter two challenges: (1) the difficulty of unifying the elusive embedding spaces to the same latent space; (2) the difficulty of distinguishing the real anchor nodes from their neighbors, resulting in the confounding matching problem. To address these challenges, we present the Collaborative Cross-Network Embedding (CCNE) framework in this paper. This framework provides a collaborative and straightforward paradigm to better unify the two networks to the same latent space by preserving both intra- and inter-network structural features, without the need for a carefully designed mapping function. Meanwhile, a hard negative sampling strategy is adopted to distinguish anchor nodes from their sampled neighbors. Furthermore, an iterative CCNE is proposed to alleviate the scarcity of observed anchor links. Extensive experiments on real social networks demonstrate that the proposed collaborative framework outperforms current embedding-matching methods in terms of accuracy, robustness as well as compatibility.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
刚刚
大鸣王潮完成签到,获得积分10
1秒前
2秒前
李爱国应助ff采纳,获得10
2秒前
脑洞疼应助糟糕的铁锤采纳,获得10
3秒前
从容安珊完成签到,获得积分10
3秒前
MQ完成签到,获得积分10
4秒前
4秒前
4秒前
5秒前
5秒前
蓝天应助lu1222采纳,获得10
5秒前
LabRat发布了新的文献求助10
6秒前
7秒前
7秒前
TTLOVEDXX完成签到,获得积分10
7秒前
xiaohan发布了新的文献求助10
8秒前
4born发布了新的文献求助10
9秒前
量子星尘发布了新的文献求助10
9秒前
852应助dina采纳,获得10
9秒前
肖旻发布了新的文献求助10
10秒前
耍酷的荧发布了新的文献求助30
10秒前
大石头完成签到,获得积分10
10秒前
NATURECATCHER发布了新的文献求助10
11秒前
领导范儿应助卉木萋萋采纳,获得10
11秒前
tang完成签到,获得积分10
11秒前
innocence@x发布了新的文献求助30
11秒前
程瑞哲完成签到,获得积分10
11秒前
NexusExplorer应助自闭小天才采纳,获得10
12秒前
baozibaozi发布了新的文献求助10
12秒前
Jasper应助魁梧的涵柏采纳,获得10
13秒前
13秒前
DrN完成签到,获得积分10
13秒前
领导范儿应助拉长的晓蕾采纳,获得10
15秒前
15秒前
科研通AI6.1应助茶米采纳,获得10
15秒前
15秒前
天天快乐应助糟糕的铁锤采纳,获得10
16秒前
黑色天空完成签到,获得积分10
16秒前
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5784354
求助须知:如何正确求助?哪些是违规求助? 5682151
关于积分的说明 15463941
捐赠科研通 4913559
什么是DOI,文献DOI怎么找? 2644745
邀请新用户注册赠送积分活动 1592607
关于科研通互助平台的介绍 1547134