Brain network analysis of working memory in schizophrenia based on multi graph attention network

工作记忆 图形 计算机科学 精神分裂症(面向对象编程) 认知 功率图分析 脑电图 神经科学 注意力网络 心理学 人工智能 模式识别(心理学) 认知心理学 听力学 医学 精神科 理论计算机科学
作者
Ping Lin,Geng Zhu,Xinyi Xu,Zhen Wang,Xiaoou Li,Bin Li
出处
期刊:Brain Research [Elsevier]
卷期号:: 148816-148816 被引量:1
标识
DOI:10.1016/j.brainres.2024.148816
摘要

The cognitive impairment in schizophrenia (SZ) is characterized by significant deficits in working memory task. In order to explore the brain changes of SZ during a working memory task, we performed time-domain and time–frequency analysis of event related potentials (ERP) of SZ during a 0-back task. The P3 wave amplitude was found to be significantly lower in SZ patients than in healthy controls (HC) (p < 0.05). The power in the θ and α bands was significantly enhanced in the SZ group 200 ms after stimulation, while the θ band was significantly enhanced and the β band was weakened in the HC group. Furthermore, phase lag index (PLI) based brain functional connectivity maps showed differences in the connections between parietal and frontotemporal lobes between SZ and HC (p < 0.05). Due to the natural similarity between brain networks and graph data, and the fact that graph attention network can aggregate the features of adjacent nodes, it has more advantages in learning the features of brain regions. We propose a multi graph attention network model combined with adaptive initial residual (AIR) for SZ classification, which achieves an accuracy of 90.90 % and 78.57 % on an open dataset (Zenodo) and our 0-back dataset, respectively. Overall, the proposed methodology offers promising potential for understanding the brain functional connections of schizophrenia.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
通~发布了新的文献求助30
1秒前
1秒前
雨雾发布了新的文献求助10
2秒前
daiyapeng完成签到,获得积分10
2秒前
ivy应助科研通管家采纳,获得10
3秒前
科研通AI2S应助科研通管家采纳,获得10
3秒前
Jasper应助科研通管家采纳,获得10
3秒前
3秒前
科研通AI5应助科研通管家采纳,获得10
3秒前
科研通AI5应助科研通管家采纳,获得10
3秒前
NN应助科研通管家采纳,获得10
3秒前
36456657应助科研通管家采纳,获得10
3秒前
科研通AI5应助科研通管家采纳,获得30
3秒前
Hello应助科研通管家采纳,获得10
3秒前
科研通AI5应助科研通管家采纳,获得10
3秒前
李爱国应助科研通管家采纳,获得10
3秒前
NN应助科研通管家采纳,获得10
4秒前
充电宝应助科研通管家采纳,获得10
4秒前
4秒前
36456657应助科研通管家采纳,获得10
4秒前
NN应助科研通管家采纳,获得10
4秒前
爆米花应助科研通管家采纳,获得10
4秒前
科研通AI5应助科研通管家采纳,获得10
4秒前
4秒前
顾矜应助科研通管家采纳,获得10
4秒前
NN应助科研通管家采纳,获得10
4秒前
4秒前
赘婿应助科研通管家采纳,获得30
4秒前
4秒前
shouyu29应助科研通管家采纳,获得10
4秒前
4秒前
顾闭月发布了新的文献求助10
4秒前
4秒前
活力绮兰应助科研通管家采纳,获得10
5秒前
斯文败类应助科研通管家采纳,获得10
5秒前
5秒前
栀清完成签到,获得积分20
5秒前
小W爱吃梨完成签到,获得积分10
7秒前
7秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794