Energy Transition, the Next Hotspot of Energy Research: A Study Using Topic Modeling

热点(地质) 能量转换 计算机科学 经济地理学 地理 物理 地球物理学 医学 替代医学 病理 灵丹妙药
作者
Shrawan Kumar Trivedi,Amrinder Singh,Mohd Irfan,T. Harigaran,Pradipta Patra
出处
期刊:IEEE Transactions on Engineering Management [Institute of Electrical and Electronics Engineers]
卷期号:71: 5829-5846 被引量:1
标识
DOI:10.1109/tem.2024.3368153
摘要

The rapid increase in the amount of greenhouse gas emissions resulting from the utilization of fossil fuels to meet global energy needs has made the transition to cleaner energy sources imperative. Past studies show that energy transition not only improves the environment that we live in but is also a means to fulfill many of the United Nation's sustainable development goals. Even though studies as early as the 1980s focused on energy transition, there has been a spurt in the volume of literature in the mentioned area over the last five years (post-2018). Consequently, researchers face a daunting task in scanning through this large literature body and identifying the key research trends and gray areas in energy transition research. The current study tries to address this problem by the use of an unsupervised machine learning technique "topic modeling via latent Dirichlet allocation model" implemented on the abstracts of 1221 research articles (related to energy transition) extracted from the Scopus database. The topic modeling approach reveals eight meaningfully interpretable unique topics. T he use of technology and models for energy transition, energy transition and policy, environmental impacts of energy transition, and the impact of transition on energy markets are the most researched topics. However, benefits from energy transition, energy distribution, importance, and socio-economic impacts of energy transition are largely understudied. The study not only conducts a comprehensive analysis of the energy transition literature but also provides lots of implications and future research directions for the benefit of various stakeholders.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
saniwa发布了新的文献求助10
1秒前
1秒前
阿彬完成签到 ,获得积分10
2秒前
昨夜星辰完成签到,获得积分10
2秒前
2秒前
3秒前
3秒前
5秒前
勤奋的猪完成签到,获得积分10
5秒前
深情的寒风完成签到,获得积分20
6秒前
大个应助东方一斩采纳,获得10
6秒前
SciGPT应助米米碎片采纳,获得10
7秒前
卿莞尔发布了新的文献求助10
7秒前
7秒前
恋空完成签到,获得积分10
8秒前
9秒前
9秒前
12秒前
12秒前
12秒前
12秒前
Tin完成签到,获得积分10
13秒前
jing216发布了新的文献求助10
13秒前
沉静盼易发布了新的文献求助10
14秒前
华仔应助牙牙采纳,获得10
14秒前
bkagyin应助风中如松采纳,获得10
14秒前
是这样应助fang采纳,获得10
15秒前
15秒前
天娟完成签到,获得积分10
15秒前
jjgogogog发布了新的文献求助10
16秒前
jin完成签到,获得积分10
16秒前
酒酒完成签到,获得积分20
16秒前
christine完成签到,获得积分10
16秒前
bo发布了新的文献求助10
17秒前
沐沐完成签到,获得积分10
17秒前
cq完成签到 ,获得积分10
17秒前
共享精神应助雅琪采纳,获得10
17秒前
科目三应助愤怒的映萱采纳,获得10
18秒前
Catalina_S应助有的没的采纳,获得10
20秒前
研友_VZG7GZ应助有的没的采纳,获得10
20秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Continuum thermodynamics and material modelling 2000
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
지식생태학: 생태학, 죽은 지식을 깨우다 700
Neuromuscular and Electrodiagnostic Medicine Board Review 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3469657
求助须知:如何正确求助?哪些是违规求助? 3062868
关于积分的说明 9080250
捐赠科研通 2753067
什么是DOI,文献DOI怎么找? 1510691
科研通“疑难数据库(出版商)”最低求助积分说明 697975
邀请新用户注册赠送积分活动 697938