生物炭
碱土
化学
土壤盐分
环境修复
环境化学
土壤pH值
微生物种群生物学
土壤有机质
土壤改良剂
微生物
农学
土壤水分
环境科学
土壤科学
生物
细菌
生态学
污染
遗传学
有机化学
热解
作者
Xiangling Wang,Muhammad Riaz,Saba Babar,Zeinab El‐Desouki,Bo Liu,Hao Xia,Yuxuan Li,Jiyuan Wang,Xiaoyang Xia,Cuncang Jiang
标识
DOI:10.1016/j.jenvman.2024.120033
摘要
Saline-alkali soil poses significant chanllenges to sustainable development of agriculture. Although biochar is commonly used as a soil organic amendment, its microbial remediation mechanism on saline-alkali soil requires further confirmation. To address this, we conducted a pot experiment using cotton seedlings to explore the potential remediation mechanism of rice straw biochar (BC) at three different levels on saline-alkaline soil. The results showed that adding of 2% biochar greatly improved the quality of saline-alkaline soil by reducing pH levels, electrical conductivity (EC), and water-soluble ions. Moreover, biochar increased the soil organic matter (SOM), nutrient availability and extracellular enzyme activity. Interestingly, it also reduced soil salinity and salt content in various cotton plant tissues. Additionally, biochar had a notable impact on the composition of the microbial community, causing changes in soil metabolic pathways. Notably, the addition of biochar promoted the growth and metabolism of dominant salt-tolerant bacteria, such as Proteobacteria, Bacteroidota, Acidobacteriota, and Actinobacteriota. By enhancing the positive correlation between microorganisms and metabolites, biochar alleviated the inhibitory effect of salt ions on microorganisms. In conclusion, the incorporation of biochar significantly improves the soil microenvironment, reduces soil salinity, and shows promise in ameliorating saline-alkaline soil conditions.
科研通智能强力驱动
Strongly Powered by AbleSci AI