Study of the fault diagnosis method for gas turbine sensors based on inter-parameter coupling information

计算机科学 直方图 断层(地质) 支持向量机 特征向量 核密度估计 人工智能 数据挖掘 模式识别(心理学) 数学 统计 地质学 物理 量子力学 估计员 地震学 图像(数学)
作者
Yuzhang Wang,Kanru Cheng,Fan Liu,Jiao Li,Kunyu Zhang
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:35 (4): 045103-045103 被引量:1
标识
DOI:10.1088/1361-6501/ad1914
摘要

Abstract Correct and reliable measurement data are crucial for state monitoring, safe operations, health assessment, and life prediction of integrated energy systems (IESs). Sensors are often installed in harsh environments and prone to all kinds of faults; therefore, it is necessary to diagnose sensor faults. A diagnostic method for sensor faults based on gradient histogram distribution (GHD) combined with light gradient boosting machine (LightGBM) is presented in this paper. This proposed method effectively utilizes the coupling information between the relevant parameters. The GHD efficiently extracted the time-domain characteristics of sensor faults and reduced the dimension of eigenvectors. This is beneficial to increasing the diagnostic speed. The kernel density estimation distributions of the gradient and eigenvectors for the sensor with strong correlation are similar, but that for the sensor with weak correlation are completely different. A LightGBM classifier trained based on the feature vectors was utilized to diagnose and classify the sensor faults. The diagnosis accuracy and the diagnosis time of this developed method were examined using the multiple-condition practical operation data of gas turbines in the IES. The experiment results demonstrate that the diagnostic accuracy of five sensor faults using this developed method is all above 90%. The diagnostic time is about 0.47–1.34 s, and is less than 2 s for the gradual faults.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wanci应助Lee采纳,获得30
1秒前
单纯乞完成签到,获得积分10
4秒前
科研通AI2S应助淡定采纳,获得10
4秒前
planto完成签到,获得积分10
5秒前
ambrose37完成签到 ,获得积分10
7秒前
Shuo完成签到,获得积分10
7秒前
10秒前
12秒前
kc135完成签到,获得积分10
14秒前
Lee发布了新的文献求助30
14秒前
orixero应助科研通管家采纳,获得30
17秒前
赘婿应助科研通管家采纳,获得10
17秒前
17秒前
大个应助科研通管家采纳,获得10
17秒前
17秒前
共享精神应助科研通管家采纳,获得10
17秒前
17秒前
小二郎应助科研通管家采纳,获得10
17秒前
17秒前
斯文败类应助科研通管家采纳,获得10
17秒前
情怀应助科研通管家采纳,获得30
18秒前
Owen应助科研通管家采纳,获得10
18秒前
Akim应助科研通管家采纳,获得30
18秒前
18秒前
18秒前
浅辰完成签到 ,获得积分10
18秒前
康达发布了新的文献求助10
18秒前
可爱小铭完成签到,获得积分10
18秒前
CAOHOU应助liuzengzhang666采纳,获得10
20秒前
XZZ完成签到 ,获得积分10
21秒前
务实雁梅完成签到,获得积分10
23秒前
于归故城完成签到,获得积分10
26秒前
成就映秋完成签到,获得积分10
27秒前
29秒前
HM完成签到,获得积分10
29秒前
mawenyu完成签到,获得积分10
31秒前
Yang22完成签到,获得积分10
33秒前
wqc2060完成签到,获得积分10
33秒前
33秒前
隐形曼青应助可靠的若采纳,获得10
33秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965786
求助须知:如何正确求助?哪些是违规求助? 3511078
关于积分的说明 11156200
捐赠科研通 3245691
什么是DOI,文献DOI怎么找? 1793100
邀请新用户注册赠送积分活动 874230
科研通“疑难数据库(出版商)”最低求助积分说明 804268