清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

A cross-resolution transfer learning approach for soil moisture retrieval from Sentinel-1 using limited training samples

基本事实 遥感 环境科学 含水量 均方误差 合成孔径雷达 水分 图像分辨率 土壤科学 计算机科学 气象学 机器学习 人工智能 地质学 数学 统计 地理 岩土工程
作者
Liujun Zhu,Junjie Dai,Yi Liu,Shanshui Yuan,Tianling Qin,Jeffrey P. Walker
出处
期刊:Remote Sensing of Environment [Elsevier BV]
卷期号:301: 113944-113944 被引量:20
标识
DOI:10.1016/j.rse.2023.113944
摘要

Synthetic Aperture Radar (SAR) data is increasingly popular as a data source for global near-surface soil moisture mapping, but large-scale applications are still challenging due to the complex scattering process and the cumbersome data preprocessing. The emergence of deep learning methods has allowed advances in the remote sensing of large-scale surface parameters, but its application in SAR soil moisture retrieval has suffered from the availability of ground soil moisture measurements. Accordingly, this study proposed a cross-resolution transfer learning framework, with the assumption that sophisticated models for different spatial resolutions share a similar model architecture and trainable parameters. A robust high-resolution model can thus be trained with fewer samples by using coarse models. Accordingly, 25 deep learning models were pre-trained taking ∼387,000 Soil Moisture Active Passive (SMAP) Level-3 9 km enhanced passive soil moisture measurements as the truth, with an average validation RMSE of 0.03 m3/m3. They were then transferred to finer grids of 0.1–1 km using a small number of in-situ samples. A total of ∼190,000 daily soil moisture measurements from the international soil moisture network (ISMN) were used to evaluate the proposed framework in three scenarios. The results show that 1) 5000–6000 random samples are sufficient to achieve a target RMSE of 0.06 m3/m3; 2) training samples from a short period (2 or 4 months for Sentinel-1) of 2021 resulted in an overall RMSE of ∼0.068 m3/m3 in an independent period of 2016–2020; 3) the transfer learning also improved the retrieval accuracy (10–30% in relative) over areas without ground samples used for training but failed to yield an acceptable accuracy over mountainous areas. The promising results from this study confirmed the effectiveness of using "pre-trained models + scenario specific models" for regional to global soil moisture retrieval from Sentinel-1.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小井盖完成签到 ,获得积分10
1秒前
1秒前
Fern完成签到 ,获得积分10
7秒前
个性松完成签到 ,获得积分10
9秒前
彩色的芝麻完成签到 ,获得积分10
12秒前
Lucas应助迅速向日葵采纳,获得10
16秒前
所所应助anny2022采纳,获得10
25秒前
wenbinvan完成签到,获得积分0
26秒前
lod完成签到,获得积分10
37秒前
39秒前
小马甲应助科研通管家采纳,获得10
39秒前
40秒前
anny2022发布了新的文献求助10
44秒前
44秒前
噜噜晓完成签到 ,获得积分10
46秒前
FiroZhang发布了新的文献求助10
48秒前
FiroZhang完成签到,获得积分0
55秒前
Linson完成签到,获得积分0
1分钟前
2分钟前
发个15分的完成签到 ,获得积分10
2分钟前
lilylian完成签到,获得积分10
2分钟前
天青色等烟雨完成签到 ,获得积分10
2分钟前
默默孱完成签到 ,获得积分10
2分钟前
friend516完成签到 ,获得积分10
2分钟前
阜睿完成签到 ,获得积分10
2分钟前
wodetaiyangLLL完成签到 ,获得积分10
2分钟前
西山菩提完成签到,获得积分10
3分钟前
宇文雨文完成签到 ,获得积分0
3分钟前
QCB完成签到 ,获得积分10
3分钟前
王多肉完成签到,获得积分10
3分钟前
wwdd完成签到,获得积分10
3分钟前
科科通通完成签到,获得积分10
3分钟前
cytheria完成签到 ,获得积分10
3分钟前
简单的冬瓜完成签到,获得积分10
3分钟前
BINBIN完成签到 ,获得积分10
3分钟前
3分钟前
ghytrfd完成签到,获得积分10
3分钟前
小柯基学从零学起完成签到 ,获得积分10
3分钟前
chengmin完成签到 ,获得积分10
3分钟前
南风完成签到 ,获得积分10
3分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Munson, Young, and Okiishi’s Fundamentals of Fluid Mechanics 9 edition problem solution manual (metric) 800
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3749970
求助须知:如何正确求助?哪些是违规求助? 3293224
关于积分的说明 10080150
捐赠科研通 3008612
什么是DOI,文献DOI怎么找? 1652307
邀请新用户注册赠送积分活动 787350
科研通“疑难数据库(出版商)”最低求助积分说明 752096