Few-layer graphene as an ‘active’ conductive additive for flexible aqueous supercapacitor electrodes

超级电容器 石墨烯 材料科学 导电体 电极 图层(电子) 水溶液 活动层 纳米技术 化学工程 复合材料 电化学 化学 有机化学 工程类 物理化学 薄膜晶体管
作者
Robert E.A. Williams,Sivakkumaran Sukumaran,Qaisar Abbas,Michael Hunt
出处
期刊:Carbon [Elsevier]
卷期号:218: 118744-118744
标识
DOI:10.1016/j.carbon.2023.118744
摘要

We demonstrate that few layer graphene (FLG), formed by high-shear exfoliation into an aqueous suspension, can be successfully employed as an ‘active’ conductive additive in flexible activated carbon-based aqueous electric double layer capacitor (supercapacitor) electrodes if introduced by a novel ‘vacuum infiltration’ technique. The effectiveness of the FLG can be optimised by tailoring its size distribution and loading. It is found that best performance is achieved using FLG with the broadest size distribution and, moreover, that the larger size distribution is effective over the broadest range of loading. With optimum size distribution and loading, FLG is shown to outperform a commercial carbon black conductive additive (Timcal C65). Electrodes containing 8 wt% infiltrated FLG have an equivalent series resistance (ESR) of 1.3±0.4Ω, and a specific capacitance of 142.3±0.1 F g−1 over a voltage window of 1.2 V, compared with an ESR of 3±1Ω and a specific capacitance of 96.81±0.02 F g−1 for equivalent electrodes produced with an optimal loading of carbon black additive. As a result, the specific energy density of electric double layer capacitors (EDLCs) produced with a vacuum infused FLG additive is demonstrated to be an average of 47±3% superior to those containing carbon black measured at similar power densities. In contrast to vacuum infiltration, direct mixing of FLG suspension into the electrodes is found to be ineffective, resulting in limited improvement relative to electrodes without conductive additive, the reasons for which are discussed.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
明理的之云完成签到,获得积分10
刚刚
刚刚
锂离子发布了新的文献求助10
1秒前
1秒前
传奇3应助疯狂大脑壳采纳,获得10
1秒前
junhuihe发布了新的文献求助10
2秒前
liyang发布了新的文献求助10
2秒前
堂yt完成签到,获得积分10
3秒前
张小祎完成签到,获得积分10
3秒前
3秒前
小遇完成签到 ,获得积分10
3秒前
3秒前
aoc发布了新的文献求助10
3秒前
3秒前
4秒前
共享精神应助旺仔采纳,获得30
4秒前
超帅的南霜完成签到,获得积分20
4秒前
BioGO发布了新的文献求助10
4秒前
4秒前
4秒前
烟花应助Master_Ye采纳,获得10
5秒前
5秒前
5秒前
Chen完成签到,获得积分10
5秒前
sunshine完成签到,获得积分10
6秒前
6秒前
6秒前
调皮语雪完成签到 ,获得积分10
7秒前
seata发布了新的文献求助10
7秒前
Angora发布了新的文献求助10
7秒前
8秒前
月落无痕97完成签到 ,获得积分0
8秒前
NexusExplorer应助BioGO采纳,获得10
9秒前
科研通AI6应助Kar采纳,获得10
9秒前
9秒前
Quhang发布了新的文献求助10
9秒前
流萤发布了新的文献求助10
9秒前
李健的小迷弟应助ashley采纳,获得10
10秒前
10秒前
番茄完成签到,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5647530
求助须知:如何正确求助?哪些是违规求助? 4773705
关于积分的说明 15039847
捐赠科研通 4806303
什么是DOI,文献DOI怎么找? 2570208
邀请新用户注册赠送积分活动 1527046
关于科研通互助平台的介绍 1486132