Molecular mechanism of Saikosaponin-d in the treatment of gastric cancer based on network pharmacology and in vitro experimental verification

机制(生物学) 体外 药理学 癌症 化学 计算生物学 医学 生物 内科学 生物化学 物理 量子力学
作者
Ning Na,Xiangyang Li,Yi Nan,Guo Qing Chen,Sai Huang,Yuhua Du,Qinxuan Gu,Weiqiang Li,Ling Yuan
出处
期刊:Research Square - Research Square
标识
DOI:10.21203/rs.3.rs-4002897/v1
摘要

Abstract Aim Network pharmacology combined with cellular experiments to research the mechanism of action of Saikosaponin-d in the treatment of gastric cancer. Methods Drug target genes were obtained from the PubChem database and the Swiss Target Prediction database. Additionally, target genes for gastric cancer were obtained from the GEO database and the Gene Cards database. The core targets were then identified and further analyzed through Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and GESA enrichment. The clinical relevance of the core targets was assessed using the GEPIA database. Molecular docking of drug monomers and core target proteins was performed using Auto Duck Tools and Pymol software. Finally, in vitro cellular experiments including cell viability, apoptosis, cell scratch, Transwell invasion, Transwell migration, qRT-PCR, and Western blot were conducted to verify these findings of network pharmacology. Results The network pharmacology analysis predicted that the drug monomers interacted with 54 disease targets. Based on clinical relevance analysis, six core targets were selected: VEGFA, IL2, CASP3, BCL2L1, MMP2, and MMP1. Molecular docking results showed binding activity between the Saikosaponin-d monomer and these core targets. Conclusion Saikosaponin-d could inhibit gastric cancer cell proliferation, induce apoptosis, and inhibit cell migration and invasion.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
优秀不愁完成签到,获得积分10
2秒前
collapsar1完成签到,获得积分10
2秒前
熟稔发布了新的文献求助10
3秒前
Daniel应助Chen采纳,获得50
3秒前
4秒前
优雅松鼠应助一念之间采纳,获得30
8秒前
big ben完成签到 ,获得积分10
12秒前
沧海一兰完成签到,获得积分10
12秒前
积极慕梅应助悲伤肉丸采纳,获得10
12秒前
13秒前
熟稔完成签到,获得积分10
13秒前
13秒前
稀罕你发布了新的文献求助10
16秒前
Ann完成签到,获得积分10
19秒前
luojie完成签到 ,获得积分10
19秒前
十点熄灯发布了新的文献求助10
21秒前
高高的天亦完成签到 ,获得积分10
21秒前
第七个太阳完成签到,获得积分10
21秒前
HEIKU应助科研通管家采纳,获得10
22秒前
爆米花应助科研通管家采纳,获得10
22秒前
大模型应助科研通管家采纳,获得10
22秒前
爆米花应助科研通管家采纳,获得10
22秒前
共享精神应助科研通管家采纳,获得10
22秒前
酷波er应助科研通管家采纳,获得10
22秒前
22秒前
HEIKU应助科研通管家采纳,获得10
22秒前
HEIKU应助科研通管家采纳,获得10
22秒前
22秒前
22秒前
22秒前
妮妮完成签到,获得积分10
22秒前
善学以致用应助飞兰采纳,获得10
26秒前
怕孤单的听寒完成签到,获得积分10
26秒前
wjw完成签到,获得积分10
27秒前
jor666完成签到,获得积分10
28秒前
28秒前
玫瑰遇上奶油完成签到,获得积分10
29秒前
丘比特应助黙宇循光采纳,获得10
30秒前
31秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Handbook of Qualitative Cross-Cultural Research Methods 600
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3139963
求助须知:如何正确求助?哪些是违规求助? 2790850
关于积分的说明 7796798
捐赠科研通 2447191
什么是DOI,文献DOI怎么找? 1301745
科研通“疑难数据库(出版商)”最低求助积分说明 626313
版权声明 601194