A semantic-driven coupled network for infrared and visible image fusion

计算机科学 特征(语言学) 人工智能 融合 模式识别(心理学) 分割 过程(计算) 像素 计算机视觉 模态(人机交互) 代表(政治) 语义特征 语言学 哲学 操作系统 政治 法学 政治学
作者
Xiaowen Liu,Hongtao Huo,Jing Li,Shan Pang,Bowen Zheng
出处
期刊:Information Fusion [Elsevier BV]
卷期号:108: 102352-102352 被引量:14
标识
DOI:10.1016/j.inffus.2024.102352
摘要

In order to be adapted to high-level vision tasks, several infrared and visible image fusion methods cascade with the downstream network to enhance the semantic information of fusion results. However, due to the feature-level heterogeneities between fusion and downstream tasks, these methods suffer from the loss of pixel-level information and incomplete reconstruction of semantic-level information. To further improve the performance of fusion images in high-level vision tasks, we propose a semantic-driven coupled network for infrared and visible image fusion, terms as SDCFusion. Firstly, to address feature heterogeneity, we couple the segmentation and fusion networks into a joint framework such that both networks share the multi-level cross-modality coupled features. Based on the joint optimization of dual tasks, a joint action between fusion and downstream tasks is formed to force the cross-modality coupled features modeled on both pixel domain and semantic domain. Subsequently, to guide the semantic information reconstruction, we cascade two networks to form the semantic-based driven action, which continuously optimizes the fusion image to achieve semantic representation capacity. In addition, we introduce an adaptive training strategy to reduce the complexity of dual-task training. Specifically, an mIoU-based semantic measurement weight is designed to balance the joint action and driven action throughout the training process. We evaluate our method at both pixel information and semantic information levels, respectively. The qualitative and quantitative experiments verify the superiority of SDCFusion in terms of visual effects and metrics. The object detection and semantic segmentation experiments demonstrate that SDCFusion achieves superior performance in high-level vision tasks. The source code is available at https://github.com/XiaoW-Liu/SDCFusion.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
guo发布了新的文献求助10
刚刚
无限秋天发布了新的文献求助10
1秒前
whichwhy发布了新的文献求助10
2秒前
小星星发布了新的文献求助10
4秒前
小马甲应助Nomb1采纳,获得10
5秒前
FashionBoy应助章慕思采纳,获得10
5秒前
BELIEVE完成签到 ,获得积分10
5秒前
ywayw完成签到,获得积分10
5秒前
英姑应助浅斟低唱采纳,获得10
6秒前
Hello应助guo采纳,获得10
7秒前
8秒前
9秒前
Akim应助白茶泡泡球采纳,获得10
11秒前
qcl发布了新的文献求助10
12秒前
12秒前
快去爬山完成签到 ,获得积分10
14秒前
吕小布完成签到,获得积分10
15秒前
15秒前
Sjingjia完成签到,获得积分10
15秒前
Melt发布了新的文献求助10
15秒前
魔女完成签到 ,获得积分10
16秒前
HongJiang完成签到,获得积分10
17秒前
科研通AI5应助Ki_Ayasato采纳,获得10
18秒前
科研通AI2S应助吕小布采纳,获得10
18秒前
penghuiye完成签到,获得积分10
19秒前
无限秋天发布了新的文献求助10
19秒前
芒果布丁完成签到 ,获得积分10
20秒前
20秒前
小星星完成签到,获得积分10
22秒前
23秒前
五十一完成签到 ,获得积分10
23秒前
温婉的松鼠完成签到 ,获得积分10
25秒前
qcl完成签到,获得积分10
26秒前
小子完成签到,获得积分20
26秒前
被文献折磨疯了完成签到,获得积分10
26秒前
晨露完成签到 ,获得积分10
26秒前
Melt完成签到,获得积分10
26秒前
酷波er应助Felixsun采纳,获得10
27秒前
张zi完成签到,获得积分10
28秒前
31秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The First Nuclear Era: The Life and Times of a Technological Fixer 500
Unusual formation of 4-diazo-3-nitriminopyrazoles upon acid nitration of pyrazolo[3,4-d][1,2,3]triazoles 500
岡本唐貴自伝的回想画集 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3671635
求助须知:如何正确求助?哪些是违规求助? 3228335
关于积分的说明 9779690
捐赠科研通 2938645
什么是DOI,文献DOI怎么找? 1610206
邀请新用户注册赠送积分活动 760547
科研通“疑难数据库(出版商)”最低求助积分说明 736093