已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A semantic-driven coupled network for infrared and visible image fusion

计算机科学 特征(语言学) 人工智能 融合 模式识别(心理学) 分割 过程(计算) 像素 计算机视觉 模态(人机交互) 代表(政治) 语义特征 语言学 哲学 政治 政治学 法学 操作系统
作者
Xiaowen Liu,Hongtao Huo,Jing Li,Shan Pang,Bowen Zheng
出处
期刊:Information Fusion [Elsevier]
卷期号:108: 102352-102352 被引量:54
标识
DOI:10.1016/j.inffus.2024.102352
摘要

In order to be adapted to high-level vision tasks, several infrared and visible image fusion methods cascade with the downstream network to enhance the semantic information of fusion results. However, due to the feature-level heterogeneities between fusion and downstream tasks, these methods suffer from the loss of pixel-level information and incomplete reconstruction of semantic-level information. To further improve the performance of fusion images in high-level vision tasks, we propose a semantic-driven coupled network for infrared and visible image fusion, terms as SDCFusion. Firstly, to address feature heterogeneity, we couple the segmentation and fusion networks into a joint framework such that both networks share the multi-level cross-modality coupled features. Based on the joint optimization of dual tasks, a joint action between fusion and downstream tasks is formed to force the cross-modality coupled features modeled on both pixel domain and semantic domain. Subsequently, to guide the semantic information reconstruction, we cascade two networks to form the semantic-based driven action, which continuously optimizes the fusion image to achieve semantic representation capacity. In addition, we introduce an adaptive training strategy to reduce the complexity of dual-task training. Specifically, an mIoU-based semantic measurement weight is designed to balance the joint action and driven action throughout the training process. We evaluate our method at both pixel information and semantic information levels, respectively. The qualitative and quantitative experiments verify the superiority of SDCFusion in terms of visual effects and metrics. The object detection and semantic segmentation experiments demonstrate that SDCFusion achieves superior performance in high-level vision tasks. The source code is available at https://github.com/XiaoW-Liu/SDCFusion.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
liyuheng发布了新的文献求助10
1秒前
酷波er应助科研通管家采纳,获得10
2秒前
Jasper应助科研通管家采纳,获得10
2秒前
充电宝应助科研通管家采纳,获得10
2秒前
猪猪hero应助科研通管家采纳,获得10
2秒前
酷波er应助科研通管家采纳,获得10
2秒前
猪猪hero应助科研通管家采纳,获得10
2秒前
Jasper应助科研通管家采纳,获得10
2秒前
李爱国应助科研通管家采纳,获得10
2秒前
充电宝应助科研通管家采纳,获得10
2秒前
猪猪hero应助科研通管家采纳,获得10
2秒前
猪猪hero应助科研通管家采纳,获得10
2秒前
2秒前
猪猪hero应助科研通管家采纳,获得10
2秒前
无名应助科研通管家采纳,获得10
2秒前
李爱国应助科研通管家采纳,获得10
2秒前
小蘑菇应助科研通管家采纳,获得10
2秒前
猪猪hero应助科研通管家采纳,获得10
2秒前
8R60d8应助科研通管家采纳,获得10
2秒前
2秒前
猪猪hero应助科研通管家采纳,获得10
2秒前
无名应助科研通管家采纳,获得10
2秒前
2秒前
小蘑菇应助科研通管家采纳,获得10
2秒前
猪猪hero应助科研通管家采纳,获得10
2秒前
8R60d8应助科研通管家采纳,获得10
2秒前
2秒前
猪猪hero应助科研通管家采纳,获得10
2秒前
猪猪hero应助科研通管家采纳,获得10
2秒前
2秒前
猪猪hero应助科研通管家采纳,获得10
2秒前
猪猪hero应助科研通管家采纳,获得10
3秒前
CipherSage应助科研通管家采纳,获得10
3秒前
猪猪hero应助科研通管家采纳,获得10
3秒前
猪猪hero应助科研通管家采纳,获得10
3秒前
3秒前
CipherSage应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
sQUIZ your knowledge: Multiple progressive erythematous plaques and nodules in an elderly man 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5771589
求助须知:如何正确求助?哪些是违规求助? 5592681
关于积分的说明 15427933
捐赠科研通 4904901
什么是DOI,文献DOI怎么找? 2639075
邀请新用户注册赠送积分活动 1586878
关于科研通互助平台的介绍 1541879