A semantic-driven coupled network for infrared and visible image fusion

计算机科学 特征(语言学) 人工智能 融合 模式识别(心理学) 分割 过程(计算) 像素 计算机视觉 模态(人机交互) 代表(政治) 语义特征 语言学 哲学 政治 政治学 法学 操作系统
作者
Xiaowen Liu,Hongtao Huo,Jing Li,Shan Pang,Bowen Zheng
出处
期刊:Information Fusion [Elsevier]
卷期号:108: 102352-102352 被引量:6
标识
DOI:10.1016/j.inffus.2024.102352
摘要

In order to be adapted to high-level vision tasks, several infrared and visible image fusion methods cascade with the downstream network to enhance the semantic information of fusion results. However, due to the feature-level heterogeneities between fusion and downstream tasks, these methods suffer from the loss of pixel-level information and incomplete reconstruction of semantic-level information. To further improve the performance of fusion images in high-level vision tasks, we propose a semantic-driven coupled network for infrared and visible image fusion, terms as SDCFusion. Firstly, to address feature heterogeneity, we couple the segmentation and fusion networks into a joint framework such that both networks share the multi-level cross-modality coupled features. Based on the joint optimization of dual tasks, a joint action between fusion and downstream tasks is formed to force the cross-modality coupled features modeled on both pixel domain and semantic domain. Subsequently, to guide the semantic information reconstruction, we cascade two networks to form the semantic-based driven action, which continuously optimizes the fusion image to achieve semantic representation capacity. In addition, we introduce an adaptive training strategy to reduce the complexity of dual-task training. Specifically, an mIoU-based semantic measurement weight is designed to balance the joint action and driven action throughout the training process. We evaluate our method at both pixel information and semantic information levels, respectively. The qualitative and quantitative experiments verify the superiority of SDCFusion in terms of visual effects and metrics. The object detection and semantic segmentation experiments demonstrate that SDCFusion achieves superior performance in high-level vision tasks. The source code is available at https://github.com/XiaoW-Liu/SDCFusion.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
dfsf发布了新的文献求助10
1秒前
重要问筠发布了新的文献求助10
1秒前
1秒前
2秒前
夏天无发布了新的文献求助10
3秒前
Halo完成签到,获得积分10
3秒前
大模型应助归尘不是叶采纳,获得10
3秒前
自然钢笔完成签到 ,获得积分10
3秒前
nature完成签到,获得积分10
4秒前
英姑应助追寻鸵鸟采纳,获得10
4秒前
甜的瓜完成签到,获得积分10
4秒前
小杨发布了新的文献求助10
6秒前
nature发布了新的文献求助10
7秒前
dd发布了新的文献求助30
7秒前
莫莫莫莫几完成签到,获得积分10
7秒前
7秒前
8秒前
酷酷季节完成签到,获得积分10
9秒前
精明元霜应助小点点采纳,获得10
10秒前
11秒前
medxyy发布了新的文献求助20
12秒前
燕燕发布了新的文献求助10
12秒前
个性竺发布了新的文献求助10
13秒前
14秒前
WWW发布了新的文献求助10
14秒前
科研混子发布了新的文献求助10
14秒前
14秒前
刘小花完成签到,获得积分10
15秒前
科目三应助小杨采纳,获得10
15秒前
jackpot发布了新的文献求助10
16秒前
16秒前
丘比特应助Autken采纳,获得10
18秒前
Rocky完成签到 ,获得积分10
18秒前
18秒前
18秒前
万能图书馆应助smz采纳,获得20
18秒前
mostspecial发布了新的文献求助30
19秒前
Mintkarla发布了新的文献求助10
20秒前
20秒前
任性冰凡发布了新的文献求助10
21秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3149784
求助须知:如何正确求助?哪些是违规求助? 2800775
关于积分的说明 7841901
捐赠科研通 2458351
什么是DOI,文献DOI怎么找? 1308425
科研通“疑难数据库(出版商)”最低求助积分说明 628499
版权声明 601706