A semantic-driven coupled network for infrared and visible image fusion

计算机科学 特征(语言学) 人工智能 融合 模式识别(心理学) 分割 过程(计算) 像素 计算机视觉 模态(人机交互) 代表(政治) 语义特征 语言学 哲学 政治 政治学 法学 操作系统
作者
Xiaowen Liu,Hongtao Huo,Jing Li,Shan Pang,Bowen Zheng
出处
期刊:Information Fusion [Elsevier]
卷期号:108: 102352-102352 被引量:36
标识
DOI:10.1016/j.inffus.2024.102352
摘要

In order to be adapted to high-level vision tasks, several infrared and visible image fusion methods cascade with the downstream network to enhance the semantic information of fusion results. However, due to the feature-level heterogeneities between fusion and downstream tasks, these methods suffer from the loss of pixel-level information and incomplete reconstruction of semantic-level information. To further improve the performance of fusion images in high-level vision tasks, we propose a semantic-driven coupled network for infrared and visible image fusion, terms as SDCFusion. Firstly, to address feature heterogeneity, we couple the segmentation and fusion networks into a joint framework such that both networks share the multi-level cross-modality coupled features. Based on the joint optimization of dual tasks, a joint action between fusion and downstream tasks is formed to force the cross-modality coupled features modeled on both pixel domain and semantic domain. Subsequently, to guide the semantic information reconstruction, we cascade two networks to form the semantic-based driven action, which continuously optimizes the fusion image to achieve semantic representation capacity. In addition, we introduce an adaptive training strategy to reduce the complexity of dual-task training. Specifically, an mIoU-based semantic measurement weight is designed to balance the joint action and driven action throughout the training process. We evaluate our method at both pixel information and semantic information levels, respectively. The qualitative and quantitative experiments verify the superiority of SDCFusion in terms of visual effects and metrics. The object detection and semantic segmentation experiments demonstrate that SDCFusion achieves superior performance in high-level vision tasks. The source code is available at https://github.com/XiaoW-Liu/SDCFusion.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
li完成签到 ,获得积分10
1秒前
yyy发布了新的文献求助10
2秒前
2秒前
司马秋凌完成签到,获得积分10
4秒前
彭于晏应助糟糕的铁锤采纳,获得50
5秒前
5秒前
安详砖家完成签到,获得积分10
6秒前
梁潇桦完成签到,获得积分20
6秒前
量子星尘发布了新的文献求助10
8秒前
8秒前
脑洞疼应助火羊宝采纳,获得10
9秒前
细草微风岸完成签到,获得积分10
9秒前
李爱国应助huahuahua采纳,获得10
10秒前
冷傲书萱发布了新的文献求助10
10秒前
黄紫红完成签到 ,获得积分10
11秒前
摸俞发布了新的文献求助10
12秒前
享受不良诱惑完成签到,获得积分10
13秒前
结实的胡萝卜完成签到,获得积分10
15秒前
16秒前
17秒前
科研通AI2S应助李昕123采纳,获得10
17秒前
研友_VZG7GZ应助milu采纳,获得10
17秒前
JZL完成签到 ,获得积分10
18秒前
19秒前
超帅平蝶完成签到,获得积分10
19秒前
22秒前
毛儿豆儿发布了新的文献求助10
22秒前
博珺辰发布了新的文献求助10
22秒前
酷波er应助摸俞采纳,获得10
23秒前
byron发布了新的文献求助10
23秒前
科研通AI2S应助yue采纳,获得10
24秒前
量子星尘发布了新的文献求助10
24秒前
秋夏山完成签到,获得积分10
25秒前
25秒前
lawang发布了新的文献求助10
27秒前
28秒前
嘉悦发布了新的文献求助10
28秒前
31秒前
萝卜Eating完成签到 ,获得积分10
31秒前
搜集达人应助yyy采纳,获得10
32秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 871
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5421862
求助须知:如何正确求助?哪些是违规求助? 4536861
关于积分的说明 14155275
捐赠科研通 4453423
什么是DOI,文献DOI怎么找? 2442864
邀请新用户注册赠送积分活动 1434254
关于科研通互助平台的介绍 1411370