A semantic-driven coupled network for infrared and visible image fusion

计算机科学 特征(语言学) 人工智能 融合 模式识别(心理学) 分割 过程(计算) 像素 计算机视觉 模态(人机交互) 代表(政治) 语义特征 语言学 哲学 政治 政治学 法学 操作系统
作者
Xiaowen Liu,Hongtao Huo,Jing Li,Shan Pang,Bowen Zheng
出处
期刊:Information Fusion [Elsevier]
卷期号:108: 102352-102352 被引量:11
标识
DOI:10.1016/j.inffus.2024.102352
摘要

In order to be adapted to high-level vision tasks, several infrared and visible image fusion methods cascade with the downstream network to enhance the semantic information of fusion results. However, due to the feature-level heterogeneities between fusion and downstream tasks, these methods suffer from the loss of pixel-level information and incomplete reconstruction of semantic-level information. To further improve the performance of fusion images in high-level vision tasks, we propose a semantic-driven coupled network for infrared and visible image fusion, terms as SDCFusion. Firstly, to address feature heterogeneity, we couple the segmentation and fusion networks into a joint framework such that both networks share the multi-level cross-modality coupled features. Based on the joint optimization of dual tasks, a joint action between fusion and downstream tasks is formed to force the cross-modality coupled features modeled on both pixel domain and semantic domain. Subsequently, to guide the semantic information reconstruction, we cascade two networks to form the semantic-based driven action, which continuously optimizes the fusion image to achieve semantic representation capacity. In addition, we introduce an adaptive training strategy to reduce the complexity of dual-task training. Specifically, an mIoU-based semantic measurement weight is designed to balance the joint action and driven action throughout the training process. We evaluate our method at both pixel information and semantic information levels, respectively. The qualitative and quantitative experiments verify the superiority of SDCFusion in terms of visual effects and metrics. The object detection and semantic segmentation experiments demonstrate that SDCFusion achieves superior performance in high-level vision tasks. The source code is available at https://github.com/XiaoW-Liu/SDCFusion.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
哭泣的翠丝完成签到,获得积分10
刚刚
刚刚
jennyyu完成签到,获得积分10
刚刚
terence完成签到,获得积分10
刚刚
1秒前
1秒前
HopeStar发布了新的文献求助10
1秒前
马保国123发布了新的文献求助10
1秒前
Hello应助蓝莓松饼采纳,获得10
2秒前
2秒前
优秀的枫发布了新的文献求助10
2秒前
2秒前
KDC完成签到,获得积分10
2秒前
MuMu完成签到,获得积分10
3秒前
3秒前
Yana1311完成签到,获得积分10
4秒前
lkc发布了新的文献求助10
4秒前
大气飞丹完成签到 ,获得积分10
4秒前
调研昵称发布了新的文献求助10
4秒前
yu完成签到 ,获得积分10
5秒前
Lvj发布了新的文献求助10
5秒前
英俊的铭应助lanjq兰坚强采纳,获得10
6秒前
123发布了新的文献求助10
6秒前
含蓄的鹤发布了新的文献求助10
6秒前
6秒前
受伤访波完成签到,获得积分10
7秒前
香蕉觅云应助亻鱼采纳,获得10
7秒前
欢欢发布了新的文献求助10
7秒前
慕青应助研友_Z1WvKL采纳,获得10
7秒前
7秒前
多情怜蕾完成签到,获得积分10
8秒前
8秒前
AD发布了新的文献求助10
9秒前
谢朝邦发布了新的文献求助10
9秒前
科研通AI5应助玲珑油豆腐采纳,获得10
9秒前
9秒前
wjh发布了新的文献求助10
9秒前
Lucky完成签到,获得积分10
10秒前
谨慎涵柏发布了新的文献求助10
10秒前
SciGPT应助心灵美发卡采纳,获得10
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759