An Online Dynamic Radiomics–Clinical Nomogram to Predict Recurrence in Patients with Spontaneous Intracerebral Hemorrhage

列线图 医学 单变量 接收机工作特性 逻辑回归 脑出血 无线电技术 多元统计 回顾性队列研究 内科学 放射科 机器学习 蛛网膜下腔出血 计算机科学
作者
Zhixian Luo,Ying Zhou,Mengying Yu,Haoli Xu,Xinyi Tao,Zhenghao Jiang,Meihao Wang,Zusen Ye,Yunjun Yang,Dongqin Zhu
出处
期刊:World Neurosurgery [Elsevier]
卷期号:183: e638-e648
标识
DOI:10.1016/j.wneu.2023.12.160
摘要

Radiomics can reflect the heterogeneity within the focus. We aim to explore whether radiomics can predict recurrent intracerebral hemorrhage (RICH) and develop an online dynamic nomogram to predict it.This retrospective study collected the clinical and radiomics features of patients with spontaneous intracerebral hemorrhage seen in our hospital from October 2013 to October 2016. We used the minimum redundancy maximum relevancy and the least absolute shrinkage and selection operator methods to screen radiomics features and calculate the Rad-score. We use the univariate and multivariate analyses to screen clinical predictors. Optimal clinical features and Rad-score were used to construct different logistics regression models called the clinical model, radiomics model, and combined-logistic regression model. DeLong testing was performed to compare performance among different models. The model with the best predictive performance was used to construct an online dynamic nomogram.Overall, 304 patients with intracerebral hemorrhage were enrolled in this study. Fourteen radiomics features were selected to calculate the Rad-score. The patients with RICH had a significantly higher Rad-score than those without (0.5 vs. -0.8; P< 0.001). The predictive performance of the combined-logistic regression model with Rad-score was better than that of the clinical model for both the training (area under the receiver operating curve, 0.81 vs. 0.71; P = 0.02) and testing (area under the receiver operating curve, 0.65 vs. 0.58; P = 0.04) cohorts statistically.Radiomics features were determined related to RICH. Adding Rad-score into conventional clinical models significantly improves the prediction efficiency. We developed an online dynamic nomogram to accurately and conveniently evaluate RICH.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
混世魔王完成签到,获得积分10
2秒前
六加七完成签到,获得积分10
3秒前
4秒前
科研通AI2S应助月蚀六花采纳,获得10
5秒前
6秒前
JamesPei应助健壮保温杯采纳,获得10
7秒前
星辰大海应助dingyi601采纳,获得10
7秒前
Seo完成签到 ,获得积分10
9秒前
朝露由希发布了新的文献求助10
9秒前
Damon完成签到 ,获得积分10
12秒前
lyh完成签到,获得积分10
13秒前
xyzhang完成签到,获得积分10
14秒前
学术通zzz应助月蚀六花采纳,获得10
15秒前
Hello应助墨尘采纳,获得30
15秒前
16秒前
朝露由希完成签到,获得积分10
18秒前
SciGPT应助GUMC采纳,获得10
19秒前
20秒前
仰望星空发布了新的文献求助10
20秒前
21秒前
浮尘完成签到 ,获得积分0
22秒前
23秒前
l玖应助月蚀六花采纳,获得10
24秒前
24秒前
25秒前
25秒前
26秒前
27秒前
27秒前
28秒前
一一一发布了新的文献求助10
28秒前
野猪空手道完成签到,获得积分10
29秒前
快乐黑猫发布了新的文献求助10
30秒前
30秒前
遥感小虫发布了新的文献求助10
31秒前
whisper完成签到,获得积分10
32秒前
33秒前
刚刚发布了新的文献求助10
35秒前
l玖应助月蚀六花采纳,获得10
36秒前
whisper发布了新的文献求助10
37秒前
高分求助中
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
Spatial Political Economy: Uneven Development and the Production of Nature in Chile 400
Research on managing groups and teams 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3329329
求助须知:如何正确求助?哪些是违规求助? 2959023
关于积分的说明 8593998
捐赠科研通 2637470
什么是DOI,文献DOI怎么找? 1443549
科研通“疑难数据库(出版商)”最低求助积分说明 668773
邀请新用户注册赠送积分活动 656146