Predicting fluid–structure interaction with graph neural networks

物理 人工神经网络 统计物理学 人工智能 计算机科学
作者
Rui Gao,Rajeev K. Jaiman
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:36 (1) 被引量:4
标识
DOI:10.1063/5.0182801
摘要

We present a rotation equivariant, quasi-monolithic graph neural network framework for the reduced-order modeling (ROM) of fluid–structure interaction systems. With the aid of an arbitrary Lagrangian–Eulerian (ALE) formulation, the system states are evolved temporally with two sub-networks. The movement of the mesh is reduced to the evolution of several coefficients via complex-valued proper orthogonal decomposition (POD), and the prediction of these coefficients over time is handled by a single multi-layer perceptron (MLP). A finite element-inspired hypergraph neural network is employed to predict the evolution of the fluid state based on the state of the whole system. The structural state is implicitly modeled by the movement of the mesh on the solid–fluid interface; hence, it makes the proposed framework quasi-monolithic. The effectiveness of the proposed framework is assessed on two prototypical fluid–structure systems, namely, the flow around an elastically mounted cylinder and the flow around a hyperelastic plate attached to a fixed cylinder. The proposed framework tracks the interface description and provides stable and accurate system state predictions during roll-out for at least 2000 time steps and even demonstrates some capability in self-correcting erroneous predictions. The proposed framework also enables direct calculation of the lift and drag forces using the predicted fluid and mesh states, in contrast to existing convolution-based architectures. The proposed reduced-order model via the graph neural network has implications for the development of physics-based digital twins concerning moving boundaries and fluid–structure interactions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大模型应助kk采纳,获得10
1秒前
潮哈哈耶发布了新的文献求助10
2秒前
123发布了新的文献求助10
2秒前
2秒前
2秒前
2秒前
越红发布了新的文献求助10
2秒前
仲乔妹完成签到,获得积分10
3秒前
4秒前
5秒前
6秒前
8秒前
9秒前
Victor完成签到 ,获得积分10
9秒前
胡锦霞发布了新的文献求助30
10秒前
彭彦舟完成签到,获得积分20
10秒前
ranranran发布了新的文献求助10
10秒前
11秒前
4466完成签到,获得积分10
11秒前
miao发布了新的文献求助10
11秒前
量子星尘发布了新的文献求助10
12秒前
华仔应助黄黄采纳,获得10
12秒前
13秒前
积极迎丝关注了科研通微信公众号
13秒前
14秒前
小包包发布了新的文献求助10
14秒前
yunshui发布了新的文献求助10
14秒前
15秒前
外向新之完成签到,获得积分10
15秒前
15秒前
丘比特应助述说采纳,获得10
16秒前
ocean发布了新的文献求助10
17秒前
17秒前
01发布了新的文献求助10
17秒前
优雅的亦玉完成签到,获得积分10
18秒前
夏熠完成签到,获得积分10
18秒前
无极微光应助蓝色天空采纳,获得20
18秒前
王然完成签到,获得积分10
19秒前
以筱完成签到,获得积分10
19秒前
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 891
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5424904
求助须知:如何正确求助?哪些是违规求助? 4539183
关于积分的说明 14165914
捐赠科研通 4456291
什么是DOI,文献DOI怎么找? 2444084
邀请新用户注册赠送积分活动 1435170
关于科研通互助平台的介绍 1412492