Predicting fluid–structure interaction with graph neural networks

物理 人工神经网络 统计物理学 人工智能 计算机科学
作者
Rui Gao,Rajeev K. Jaiman
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:36 (1) 被引量:4
标识
DOI:10.1063/5.0182801
摘要

We present a rotation equivariant, quasi-monolithic graph neural network framework for the reduced-order modeling (ROM) of fluid–structure interaction systems. With the aid of an arbitrary Lagrangian–Eulerian (ALE) formulation, the system states are evolved temporally with two sub-networks. The movement of the mesh is reduced to the evolution of several coefficients via complex-valued proper orthogonal decomposition (POD), and the prediction of these coefficients over time is handled by a single multi-layer perceptron (MLP). A finite element-inspired hypergraph neural network is employed to predict the evolution of the fluid state based on the state of the whole system. The structural state is implicitly modeled by the movement of the mesh on the solid–fluid interface; hence, it makes the proposed framework quasi-monolithic. The effectiveness of the proposed framework is assessed on two prototypical fluid–structure systems, namely, the flow around an elastically mounted cylinder and the flow around a hyperelastic plate attached to a fixed cylinder. The proposed framework tracks the interface description and provides stable and accurate system state predictions during roll-out for at least 2000 time steps and even demonstrates some capability in self-correcting erroneous predictions. The proposed framework also enables direct calculation of the lift and drag forces using the predicted fluid and mesh states, in contrast to existing convolution-based architectures. The proposed reduced-order model via the graph neural network has implications for the development of physics-based digital twins concerning moving boundaries and fluid–structure interactions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
3秒前
amberzyc应助小远采纳,获得10
4秒前
qiongqiong完成签到,获得积分10
5秒前
淡定的依瑶完成签到,获得积分10
6秒前
江璃发布了新的文献求助10
8秒前
9秒前
10秒前
美丽的安珊完成签到,获得积分10
11秒前
11秒前
13秒前
Gilana完成签到,获得积分10
13秒前
xyh发布了新的文献求助10
13秒前
江璃完成签到,获得积分10
14秒前
TT发布了新的文献求助10
14秒前
美梦成真完成签到,获得积分10
15秒前
Gakay完成签到,获得积分10
15秒前
量子星尘发布了新的文献求助10
16秒前
szj完成签到,获得积分0
17秒前
旦皋完成签到,获得积分10
17秒前
赘婿应助花壳在逃野猪采纳,获得10
18秒前
卷卷完成签到,获得积分10
20秒前
JSY完成签到 ,获得积分20
20秒前
xyh完成签到,获得积分10
21秒前
小曾应助Florencia采纳,获得10
22秒前
神外王001完成签到 ,获得积分10
22秒前
27秒前
你是谁完成签到,获得积分10
28秒前
majf完成签到,获得积分10
29秒前
linhanwenzhou完成签到,获得积分10
29秒前
JSY关注了科研通微信公众号
29秒前
853225598完成签到,获得积分10
29秒前
798完成签到,获得积分10
30秒前
善学以致用应助董怼怼采纳,获得10
30秒前
妍儿完成签到,获得积分20
31秒前
隐形曼青应助高大的水壶采纳,获得10
31秒前
马哥二弟无敌完成签到 ,获得积分10
32秒前
33秒前
Florencia完成签到,获得积分10
33秒前
务实颜完成签到 ,获得积分10
33秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038368
求助须知:如何正确求助?哪些是违规求助? 3576068
关于积分的说明 11374313
捐赠科研通 3305780
什么是DOI,文献DOI怎么找? 1819322
邀请新用户注册赠送积分活动 892672
科研通“疑难数据库(出版商)”最低求助积分说明 815029