Predicting fluid–structure interaction with graph neural networks

物理 人工神经网络 统计物理学 人工智能 计算机科学
作者
Rui Gao,Rajeev K. Jaiman
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:36 (1) 被引量:4
标识
DOI:10.1063/5.0182801
摘要

We present a rotation equivariant, quasi-monolithic graph neural network framework for the reduced-order modeling (ROM) of fluid–structure interaction systems. With the aid of an arbitrary Lagrangian–Eulerian (ALE) formulation, the system states are evolved temporally with two sub-networks. The movement of the mesh is reduced to the evolution of several coefficients via complex-valued proper orthogonal decomposition (POD), and the prediction of these coefficients over time is handled by a single multi-layer perceptron (MLP). A finite element-inspired hypergraph neural network is employed to predict the evolution of the fluid state based on the state of the whole system. The structural state is implicitly modeled by the movement of the mesh on the solid–fluid interface; hence, it makes the proposed framework quasi-monolithic. The effectiveness of the proposed framework is assessed on two prototypical fluid–structure systems, namely, the flow around an elastically mounted cylinder and the flow around a hyperelastic plate attached to a fixed cylinder. The proposed framework tracks the interface description and provides stable and accurate system state predictions during roll-out for at least 2000 time steps and even demonstrates some capability in self-correcting erroneous predictions. The proposed framework also enables direct calculation of the lift and drag forces using the predicted fluid and mesh states, in contrast to existing convolution-based architectures. The proposed reduced-order model via the graph neural network has implications for the development of physics-based digital twins concerning moving boundaries and fluid–structure interactions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
Steven发布了新的文献求助10
1秒前
缓慢天菱发布了新的文献求助10
1秒前
1秒前
1秒前
wewewew发布了新的文献求助10
2秒前
underunder发布了新的文献求助10
3秒前
烟酒生完成签到,获得积分10
3秒前
量子星尘发布了新的文献求助10
4秒前
Zon发布了新的文献求助10
5秒前
nickthename发布了新的文献求助10
6秒前
sily发布了新的文献求助10
7秒前
星期八发布了新的文献求助10
7秒前
FYF发布了新的文献求助10
8秒前
科研通AI2S应助苹果初阳采纳,获得10
8秒前
9秒前
壳米应助研友_LOKXmL采纳,获得10
9秒前
9秒前
邢文瑞发布了新的文献求助10
10秒前
10秒前
所所应助难过千易采纳,获得10
10秒前
情怀应助舒服的摇伽采纳,获得10
11秒前
缓慢天菱完成签到,获得积分10
14秒前
14秒前
科研通AI2S应助nickthename采纳,获得10
14秒前
15秒前
呜呜啦啦发布了新的文献求助10
15秒前
underunder完成签到,获得积分10
15秒前
没有昵称完成签到 ,获得积分10
16秒前
呱呱完成签到,获得积分10
16秒前
嘟嘟发布了新的文献求助10
16秒前
李白爱番茄完成签到,获得积分10
18秒前
19秒前
又又完成签到,获得积分10
19秒前
20秒前
21秒前
玉灵子发布了新的文献求助10
21秒前
有缘人发布了新的文献求助10
24秒前
loyalll发布了新的文献求助10
24秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3976177
求助须知:如何正确求助?哪些是违规求助? 3520366
关于积分的说明 11202745
捐赠科研通 3256847
什么是DOI,文献DOI怎么找? 1798509
邀请新用户注册赠送积分活动 877704
科研通“疑难数据库(出版商)”最低求助积分说明 806516