Predicting fluid–structure interaction with graph neural networks

物理 人工神经网络 统计物理学 人工智能 计算机科学
作者
Rui Gao,Rajeev K. Jaiman
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:36 (1) 被引量:4
标识
DOI:10.1063/5.0182801
摘要

We present a rotation equivariant, quasi-monolithic graph neural network framework for the reduced-order modeling (ROM) of fluid–structure interaction systems. With the aid of an arbitrary Lagrangian–Eulerian (ALE) formulation, the system states are evolved temporally with two sub-networks. The movement of the mesh is reduced to the evolution of several coefficients via complex-valued proper orthogonal decomposition (POD), and the prediction of these coefficients over time is handled by a single multi-layer perceptron (MLP). A finite element-inspired hypergraph neural network is employed to predict the evolution of the fluid state based on the state of the whole system. The structural state is implicitly modeled by the movement of the mesh on the solid–fluid interface; hence, it makes the proposed framework quasi-monolithic. The effectiveness of the proposed framework is assessed on two prototypical fluid–structure systems, namely, the flow around an elastically mounted cylinder and the flow around a hyperelastic plate attached to a fixed cylinder. The proposed framework tracks the interface description and provides stable and accurate system state predictions during roll-out for at least 2000 time steps and even demonstrates some capability in self-correcting erroneous predictions. The proposed framework also enables direct calculation of the lift and drag forces using the predicted fluid and mesh states, in contrast to existing convolution-based architectures. The proposed reduced-order model via the graph neural network has implications for the development of physics-based digital twins concerning moving boundaries and fluid–structure interactions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
nanchang完成签到 ,获得积分10
刚刚
苏习习完成签到,获得积分10
刚刚
zzk发布了新的文献求助10
1秒前
唐嘉为发布了新的文献求助10
1秒前
WalkToSky完成签到,获得积分10
2秒前
老李完成签到,获得积分10
2秒前
dadadasds发布了新的文献求助10
2秒前
优秀雅容关注了科研通微信公众号
3秒前
3秒前
doctorwang完成签到,获得积分10
3秒前
lee完成签到,获得积分10
3秒前
xxxx完成签到,获得积分10
4秒前
雷若山完成签到 ,获得积分10
4秒前
tian发布了新的文献求助20
4秒前
璇22发布了新的文献求助10
4秒前
深情安青应助最後まで采纳,获得10
4秒前
W某人完成签到,获得积分10
4秒前
酷波er应助yuyuyu采纳,获得10
5秒前
裴南苇完成签到 ,获得积分10
5秒前
5秒前
5秒前
无语的如天完成签到 ,获得积分10
5秒前
fish完成签到,获得积分10
5秒前
o30发布了新的文献求助10
6秒前
冰淇琳发布了新的文献求助10
6秒前
无极发布了新的文献求助10
6秒前
7秒前
陈宇蛟发布了新的文献求助10
7秒前
8秒前
8秒前
包子发布了新的文献求助10
8秒前
9秒前
9秒前
emma完成签到,获得积分10
9秒前
莹崽无敌发布了新的文献求助10
11秒前
chuzai完成签到,获得积分10
11秒前
11秒前
bbb应助超爱茉莉茶采纳,获得10
12秒前
代骜珺完成签到,获得积分10
12秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Picture Books with Same-sex Parented Families: Unintentional Censorship 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3969222
求助须知:如何正确求助?哪些是违规求助? 3514124
关于积分的说明 11171948
捐赠科研通 3249361
什么是DOI,文献DOI怎么找? 1794799
邀请新用户注册赠送积分活动 875431
科研通“疑难数据库(出版商)”最低求助积分说明 804779