已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Predicting fluid–structure interaction with graph neural networks

物理 人工神经网络 统计物理学 人工智能 计算机科学
作者
Rui Gao,Rajeev K. Jaiman
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:36 (1) 被引量:2
标识
DOI:10.1063/5.0182801
摘要

We present a rotation equivariant, quasi-monolithic graph neural network framework for the reduced-order modeling (ROM) of fluid–structure interaction systems. With the aid of an arbitrary Lagrangian–Eulerian (ALE) formulation, the system states are evolved temporally with two sub-networks. The movement of the mesh is reduced to the evolution of several coefficients via complex-valued proper orthogonal decomposition (POD), and the prediction of these coefficients over time is handled by a single multi-layer perceptron (MLP). A finite element-inspired hypergraph neural network is employed to predict the evolution of the fluid state based on the state of the whole system. The structural state is implicitly modeled by the movement of the mesh on the solid–fluid interface; hence, it makes the proposed framework quasi-monolithic. The effectiveness of the proposed framework is assessed on two prototypical fluid–structure systems, namely, the flow around an elastically mounted cylinder and the flow around a hyperelastic plate attached to a fixed cylinder. The proposed framework tracks the interface description and provides stable and accurate system state predictions during roll-out for at least 2000 time steps and even demonstrates some capability in self-correcting erroneous predictions. The proposed framework also enables direct calculation of the lift and drag forces using the predicted fluid and mesh states, in contrast to existing convolution-based architectures. The proposed reduced-order model via the graph neural network has implications for the development of physics-based digital twins concerning moving boundaries and fluid–structure interactions.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zeb完成签到,获得积分10
2秒前
研友_8WMQ5n完成签到,获得积分10
5秒前
5秒前
默默发布了新的文献求助10
9秒前
天朗完成签到,获得积分10
12秒前
losago4954完成签到,获得积分10
13秒前
16秒前
ray发布了新的文献求助10
19秒前
小啵招糕完成签到 ,获得积分10
20秒前
22秒前
23秒前
一袋薯片关注了科研通微信公众号
25秒前
隐形曼青应助Aloha采纳,获得10
29秒前
orixero应助gaojie采纳,获得10
30秒前
38秒前
加星发布了新的文献求助10
39秒前
Aloha完成签到,获得积分10
40秒前
ChemPhys完成签到,获得积分10
42秒前
gaojie发布了新的文献求助10
43秒前
43秒前
Aloha发布了新的文献求助10
46秒前
48秒前
羲和完成签到 ,获得积分10
48秒前
平常的三问完成签到 ,获得积分10
59秒前
1分钟前
1分钟前
Zml200123发布了新的文献求助10
1分钟前
molingyue发布了新的文献求助10
1分钟前
im红牛完成签到 ,获得积分10
1分钟前
净意完成签到,获得积分10
1分钟前
Zml200123完成签到,获得积分10
1分钟前
Erin完成签到 ,获得积分10
1分钟前
Ll完成签到 ,获得积分10
1分钟前
1分钟前
共享精神应助xujiejiuxi采纳,获得10
1分钟前
还在考虑完成签到,获得积分10
1分钟前
1分钟前
1分钟前
田家溢完成签到,获得积分10
1分钟前
1分钟前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Semiconductor Process Reliability in Practice 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 600
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3234488
求助须知:如何正确求助?哪些是违规求助? 2880839
关于积分的说明 8217229
捐赠科研通 2548429
什么是DOI,文献DOI怎么找? 1377749
科研通“疑难数据库(出版商)”最低求助积分说明 647959
邀请新用户注册赠送积分活动 623314