已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Predicting fluid–structure interaction with graph neural networks

物理 人工神经网络 统计物理学 人工智能 计算机科学
作者
Rui Gao,Rajeev K. Jaiman
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:36 (1) 被引量:4
标识
DOI:10.1063/5.0182801
摘要

We present a rotation equivariant, quasi-monolithic graph neural network framework for the reduced-order modeling (ROM) of fluid–structure interaction systems. With the aid of an arbitrary Lagrangian–Eulerian (ALE) formulation, the system states are evolved temporally with two sub-networks. The movement of the mesh is reduced to the evolution of several coefficients via complex-valued proper orthogonal decomposition (POD), and the prediction of these coefficients over time is handled by a single multi-layer perceptron (MLP). A finite element-inspired hypergraph neural network is employed to predict the evolution of the fluid state based on the state of the whole system. The structural state is implicitly modeled by the movement of the mesh on the solid–fluid interface; hence, it makes the proposed framework quasi-monolithic. The effectiveness of the proposed framework is assessed on two prototypical fluid–structure systems, namely, the flow around an elastically mounted cylinder and the flow around a hyperelastic plate attached to a fixed cylinder. The proposed framework tracks the interface description and provides stable and accurate system state predictions during roll-out for at least 2000 time steps and even demonstrates some capability in self-correcting erroneous predictions. The proposed framework also enables direct calculation of the lift and drag forces using the predicted fluid and mesh states, in contrast to existing convolution-based architectures. The proposed reduced-order model via the graph neural network has implications for the development of physics-based digital twins concerning moving boundaries and fluid–structure interactions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
科研通AI6应助yang采纳,获得10
5秒前
7秒前
海鸥别叫了完成签到 ,获得积分10
8秒前
喜悦巨人完成签到,获得积分10
8秒前
小湛湛完成签到 ,获得积分10
12秒前
懒得可爱完成签到,获得积分10
14秒前
19秒前
优雅映冬完成签到 ,获得积分10
21秒前
27秒前
Steven完成签到,获得积分10
28秒前
28秒前
Cpp完成签到 ,获得积分10
28秒前
顺心乐曲发布了新的文献求助10
34秒前
35秒前
在水一方应助英俊的怀曼采纳,获得10
35秒前
yang发布了新的文献求助10
36秒前
39秒前
酷波er应助顺心乐曲采纳,获得10
39秒前
脑洞疼应助zimiao采纳,获得20
40秒前
uikymh完成签到 ,获得积分0
40秒前
卜天亦发布了新的文献求助10
43秒前
43秒前
科研通AI2S应助科研通管家采纳,获得10
43秒前
番茄应助科研通管家采纳,获得10
43秒前
FashionBoy应助科研通管家采纳,获得10
43秒前
完美世界应助科研通管家采纳,获得30
43秒前
彭于晏应助科研通管家采纳,获得10
43秒前
科研通AI6应助科研通管家采纳,获得10
43秒前
领导范儿应助科研通管家采纳,获得10
44秒前
44秒前
44秒前
leave完成签到 ,获得积分0
44秒前
46秒前
舒服的吗喽完成签到,获得积分10
48秒前
49秒前
jerry完成签到,获得积分10
50秒前
大魔王发布了新的文献求助10
51秒前
51秒前
卜天亦完成签到,获得积分10
52秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
网络安全 SEMI 标准 ( SEMI E187, SEMI E188 and SEMI E191.) 1000
Inherited Metabolic Disease in Adults: A Clinical Guide 500
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4610489
求助须知:如何正确求助?哪些是违规求助? 4016443
关于积分的说明 12435173
捐赠科研通 3698029
什么是DOI,文献DOI怎么找? 2039187
邀请新用户注册赠送积分活动 1072053
科研通“疑难数据库(出版商)”最低求助积分说明 955729