Analysis of statistical properties of variables in log data for advanced anomaly detection in cyber security

异常检测 变量(数学) 计算机科学 事件(粒子物理) 数据挖掘 数据类型 离群值 假阳性悖论 数学 人工智能 数学分析 物理 量子力学 程序设计语言
作者
Markus Wurzenberger,Georg Höld,Max Landauer,Florian Skopik
出处
期刊:Computers & Security [Elsevier BV]
卷期号:137: 103631-103631 被引量:8
标识
DOI:10.1016/j.cose.2023.103631
摘要

Log lines consist of static parts that characterize their structure and enable assignment of event types, and event parameters, i.e., variable parts that provide specific information on system processes, such as host and user names, IP addresses, and file operations. Many detection approaches only focus on anomalous event type occurrences, i.e., they parse log lines to derive unique event identifiers and subsequently detect anomalies in event sequences or event count vectors, but neglect variable parts of log lines entirely during analysis. This is especially problematic, when monitoring strongly structured log data that contains only a small number of distinct event types, for example, logs that consist of strict key value pairs, i.e., parameters that occur consistently throughout all log lines, such as it is case in access and audit logs. Thus, novel approaches are required, which focus on analysis of log lines' variable parts. In this paper, we propose the variable type detector (VTD), a novel unsupervised approach that autonomously analyzes variable log line parts to enable anomaly detection. It assigns data types to each variable, which also include probability distributions for discrete and continuous variables. The VTD raises an alarm if a variable's data type changes. Furthermore, it implements a robust indicator function that reduces false positives by tracking the data type history of each variable and reports only significant data type changes. Additionally, an event indicator enables event-based anomaly detection by taking into account the data types of all variables of a single event type. The evaluation conducted on open-source log data, demonstrates the effectiveness of the VTD compared to conventional anomaly detection approaches, such as time series analysis and PCA. Consequently, the VTD acts as a solution that extends the intrusion detection capabilities of security information and event management (SIEM) and integrates with modern concepts of endpoint detection and response (EDR) and extended detection and responses (XDR), while simultaneously serving as an asset for process monitoring that supports user and entity behavior analytics (UEBA).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小杭76应助lwl采纳,获得10
刚刚
凉小远发布了新的文献求助10
刚刚
1秒前
cl发布了新的文献求助10
1秒前
Akim应助养不活的细胞采纳,获得10
1秒前
学海无涯完成签到,获得积分10
3秒前
www完成签到,获得积分10
4秒前
5秒前
5秒前
wlscj给壮观咖啡豆的求助进行了留言
5秒前
sansronds发布了新的文献求助10
6秒前
wlscj应助橡皮鸭队长采纳,获得20
7秒前
辞镜发布了新的文献求助10
7秒前
青年才俊发布了新的文献求助10
8秒前
kaiqiang发布了新的文献求助30
8秒前
9秒前
10秒前
10秒前
wenny完成签到,获得积分10
10秒前
猪猪侠发布了新的文献求助10
11秒前
app完成签到,获得积分10
11秒前
整齐从蓉完成签到 ,获得积分20
11秒前
繁星完成签到 ,获得积分10
12秒前
燕窝窝发布了新的文献求助10
13秒前
14秒前
青年才俊发布了新的文献求助50
14秒前
14秒前
14秒前
rlomened发布了新的文献求助10
14秒前
mm完成签到,获得积分10
16秒前
fusheng发布了新的文献求助10
16秒前
SQ发布了新的文献求助10
17秒前
18秒前
小贩发布了新的文献求助10
19秒前
wtt发布了新的文献求助10
19秒前
19秒前
rlomened完成签到,获得积分20
22秒前
nana发布了新的文献求助10
22秒前
爆米花应助WATeam采纳,获得10
25秒前
核桃发布了新的文献求助10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
微纳米加工技术及其应用 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Vertebrate Palaeontology, 5th Edition 420
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5289591
求助须知:如何正确求助?哪些是违规求助? 4441121
关于积分的说明 13826643
捐赠科研通 4323520
什么是DOI,文献DOI怎么找? 2373234
邀请新用户注册赠送积分活动 1368631
关于科研通互助平台的介绍 1332534