Analysis of statistical properties of variables in log data for advanced anomaly detection in cyber security

异常检测 变量(数学) 计算机科学 事件(粒子物理) 数据挖掘 数据类型 离群值 假阳性悖论 数学 人工智能 数学分析 物理 量子力学 程序设计语言
作者
Markus Wurzenberger,Georg Höld,Max Landauer,Florian Skopik
出处
期刊:Computers & Security [Elsevier]
卷期号:137: 103631-103631 被引量:8
标识
DOI:10.1016/j.cose.2023.103631
摘要

Log lines consist of static parts that characterize their structure and enable assignment of event types, and event parameters, i.e., variable parts that provide specific information on system processes, such as host and user names, IP addresses, and file operations. Many detection approaches only focus on anomalous event type occurrences, i.e., they parse log lines to derive unique event identifiers and subsequently detect anomalies in event sequences or event count vectors, but neglect variable parts of log lines entirely during analysis. This is especially problematic, when monitoring strongly structured log data that contains only a small number of distinct event types, for example, logs that consist of strict key value pairs, i.e., parameters that occur consistently throughout all log lines, such as it is case in access and audit logs. Thus, novel approaches are required, which focus on analysis of log lines' variable parts. In this paper, we propose the variable type detector (VTD), a novel unsupervised approach that autonomously analyzes variable log line parts to enable anomaly detection. It assigns data types to each variable, which also include probability distributions for discrete and continuous variables. The VTD raises an alarm if a variable's data type changes. Furthermore, it implements a robust indicator function that reduces false positives by tracking the data type history of each variable and reports only significant data type changes. Additionally, an event indicator enables event-based anomaly detection by taking into account the data types of all variables of a single event type. The evaluation conducted on open-source log data, demonstrates the effectiveness of the VTD compared to conventional anomaly detection approaches, such as time series analysis and PCA. Consequently, the VTD acts as a solution that extends the intrusion detection capabilities of security information and event management (SIEM) and integrates with modern concepts of endpoint detection and response (EDR) and extended detection and responses (XDR), while simultaneously serving as an asset for process monitoring that supports user and entity behavior analytics (UEBA).

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
plotu完成签到,获得积分10
1秒前
1秒前
1秒前
1秒前
直菱发布了新的文献求助10
1秒前
minmin959完成签到,获得积分10
2秒前
wuxifan发布了新的文献求助10
2秒前
灰鸽舞完成签到 ,获得积分10
2秒前
3秒前
欧克欧克完成签到,获得积分10
3秒前
量子星尘发布了新的文献求助10
3秒前
lky发布了新的文献求助10
3秒前
3秒前
3秒前
nn完成签到 ,获得积分10
4秒前
打打应助懵懂的钢笔采纳,获得10
4秒前
4秒前
4秒前
4秒前
英姑应助科研通管家采纳,获得10
4秒前
QIQI发布了新的文献求助10
4秒前
4秒前
研友_VZG7GZ应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
打打应助科研通管家采纳,获得10
4秒前
大白应助科研通管家采纳,获得20
5秒前
充电宝应助科研通管家采纳,获得10
5秒前
Owen应助科研通管家采纳,获得10
5秒前
天天快乐应助科研通管家采纳,获得10
5秒前
stiger应助科研通管家采纳,获得10
5秒前
蜀安应助科研通管家采纳,获得30
5秒前
5秒前
5秒前
善学以致用应助机灵水卉采纳,获得10
5秒前
科研通AI6应助科研通管家采纳,获得10
6秒前
顾矜应助科研通管家采纳,获得10
6秒前
小马甲应助科研通管家采纳,获得10
6秒前
悦yue发布了新的文献求助10
6秒前
6秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5719256
求助须知:如何正确求助?哪些是违规求助? 5255673
关于积分的说明 15288302
捐赠科研通 4869143
什么是DOI,文献DOI怎么找? 2614653
邀请新用户注册赠送积分活动 1564667
关于科研通互助平台的介绍 1521894