清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Analysis of statistical properties of variables in log data for advanced anomaly detection in cyber security

异常检测 变量(数学) 计算机科学 事件(粒子物理) 数据挖掘 数据类型 离群值 假阳性悖论 数学 人工智能 数学分析 物理 量子力学 程序设计语言
作者
Markus Wurzenberger,Georg Höld,Max Landauer,Florian Skopik
出处
期刊:Computers & Security [Elsevier]
卷期号:137: 103631-103631 被引量:8
标识
DOI:10.1016/j.cose.2023.103631
摘要

Log lines consist of static parts that characterize their structure and enable assignment of event types, and event parameters, i.e., variable parts that provide specific information on system processes, such as host and user names, IP addresses, and file operations. Many detection approaches only focus on anomalous event type occurrences, i.e., they parse log lines to derive unique event identifiers and subsequently detect anomalies in event sequences or event count vectors, but neglect variable parts of log lines entirely during analysis. This is especially problematic, when monitoring strongly structured log data that contains only a small number of distinct event types, for example, logs that consist of strict key value pairs, i.e., parameters that occur consistently throughout all log lines, such as it is case in access and audit logs. Thus, novel approaches are required, which focus on analysis of log lines' variable parts. In this paper, we propose the variable type detector (VTD), a novel unsupervised approach that autonomously analyzes variable log line parts to enable anomaly detection. It assigns data types to each variable, which also include probability distributions for discrete and continuous variables. The VTD raises an alarm if a variable's data type changes. Furthermore, it implements a robust indicator function that reduces false positives by tracking the data type history of each variable and reports only significant data type changes. Additionally, an event indicator enables event-based anomaly detection by taking into account the data types of all variables of a single event type. The evaluation conducted on open-source log data, demonstrates the effectiveness of the VTD compared to conventional anomaly detection approaches, such as time series analysis and PCA. Consequently, the VTD acts as a solution that extends the intrusion detection capabilities of security information and event management (SIEM) and integrates with modern concepts of endpoint detection and response (EDR) and extended detection and responses (XDR), while simultaneously serving as an asset for process monitoring that supports user and entity behavior analytics (UEBA).

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
激动的似狮完成签到,获得积分10
刚刚
14秒前
Willow发布了新的文献求助10
21秒前
丸子完成签到 ,获得积分10
21秒前
萝卜猪完成签到,获得积分10
24秒前
yangzai完成签到 ,获得积分0
25秒前
40秒前
旅行者发布了新的文献求助10
45秒前
旅行者完成签到,获得积分10
53秒前
tl2333完成签到 ,获得积分10
1分钟前
tt完成签到,获得积分10
1分钟前
老迟到的友桃完成签到 ,获得积分10
1分钟前
万能图书馆应助meteor采纳,获得10
1分钟前
玛卡巴卡爱吃饭完成签到 ,获得积分10
1分钟前
2分钟前
欢呼亦绿完成签到,获得积分10
2分钟前
阿超完成签到 ,获得积分10
3分钟前
知性的剑身完成签到,获得积分10
3分钟前
nk完成签到 ,获得积分10
3分钟前
3分钟前
sy应助Willow采纳,获得10
3分钟前
稻子完成签到 ,获得积分0
3分钟前
paradox完成签到 ,获得积分10
4分钟前
4分钟前
大医仁心完成签到 ,获得积分10
5分钟前
耳东陈完成签到 ,获得积分10
5分钟前
6分钟前
6分钟前
meteor发布了新的文献求助10
6分钟前
ceeray23应助科研通管家采纳,获得10
6分钟前
6分钟前
6分钟前
Jasper应助耳东陈采纳,获得10
7分钟前
CTS发布了新的文献求助10
7分钟前
7分钟前
耳东陈发布了新的文献求助10
8分钟前
maroto完成签到 ,获得积分10
8分钟前
CTS完成签到,获得积分10
8分钟前
脑洞疼应助Cristina采纳,获得30
8分钟前
8分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5568283
求助须知:如何正确求助?哪些是违规求助? 4652740
关于积分的说明 14701953
捐赠科研通 4594589
什么是DOI,文献DOI怎么找? 2521083
邀请新用户注册赠送积分活动 1492900
关于科研通互助平台的介绍 1463698