Analysis of statistical properties of variables in log data for advanced anomaly detection in cyber security

异常检测 变量(数学) 计算机科学 事件(粒子物理) 数据挖掘 数据类型 离群值 假阳性悖论 数学 人工智能 数学分析 物理 量子力学 程序设计语言
作者
Markus Wurzenberger,Georg Höld,Max Landauer,Florian Skopik
出处
期刊:Computers & Security [Elsevier]
卷期号:137: 103631-103631 被引量:8
标识
DOI:10.1016/j.cose.2023.103631
摘要

Log lines consist of static parts that characterize their structure and enable assignment of event types, and event parameters, i.e., variable parts that provide specific information on system processes, such as host and user names, IP addresses, and file operations. Many detection approaches only focus on anomalous event type occurrences, i.e., they parse log lines to derive unique event identifiers and subsequently detect anomalies in event sequences or event count vectors, but neglect variable parts of log lines entirely during analysis. This is especially problematic, when monitoring strongly structured log data that contains only a small number of distinct event types, for example, logs that consist of strict key value pairs, i.e., parameters that occur consistently throughout all log lines, such as it is case in access and audit logs. Thus, novel approaches are required, which focus on analysis of log lines' variable parts. In this paper, we propose the variable type detector (VTD), a novel unsupervised approach that autonomously analyzes variable log line parts to enable anomaly detection. It assigns data types to each variable, which also include probability distributions for discrete and continuous variables. The VTD raises an alarm if a variable's data type changes. Furthermore, it implements a robust indicator function that reduces false positives by tracking the data type history of each variable and reports only significant data type changes. Additionally, an event indicator enables event-based anomaly detection by taking into account the data types of all variables of a single event type. The evaluation conducted on open-source log data, demonstrates the effectiveness of the VTD compared to conventional anomaly detection approaches, such as time series analysis and PCA. Consequently, the VTD acts as a solution that extends the intrusion detection capabilities of security information and event management (SIEM) and integrates with modern concepts of endpoint detection and response (EDR) and extended detection and responses (XDR), while simultaneously serving as an asset for process monitoring that supports user and entity behavior analytics (UEBA).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zhl完成签到,获得积分10
刚刚
大模型应助轻松的雨旋采纳,获得10
刚刚
zhu完成签到,获得积分10
刚刚
ZeroL完成签到 ,获得积分0
刚刚
1秒前
1秒前
Rocky完成签到,获得积分10
1秒前
123发布了新的文献求助10
1秒前
1秒前
有一瓶完成签到,获得积分10
2秒前
称心砖头完成签到,获得积分10
2秒前
汉堡包应助小T儿采纳,获得10
3秒前
狂野书文完成签到,获得积分10
3秒前
爱静静应助otaro采纳,获得40
3秒前
camera发布了新的文献求助10
3秒前
4秒前
4秒前
Hu发布了新的文献求助10
4秒前
iu发布了新的文献求助10
4秒前
好了完成签到,获得积分10
5秒前
5秒前
怡然雨雪完成签到,获得积分10
5秒前
5秒前
科研通AI5应助李唯佳采纳,获得10
5秒前
万能图书馆应助祝雲采纳,获得10
5秒前
我爱学习完成签到 ,获得积分10
6秒前
111完成签到,获得积分10
6秒前
可乐要加冰完成签到,获得积分10
6秒前
深情安青应助郑开司09采纳,获得10
7秒前
娜行发布了新的文献求助10
7秒前
Auoroa完成签到,获得积分10
7秒前
明智之举完成签到,获得积分10
8秒前
赵赵完成签到,获得积分10
8秒前
共享精神应助lalala采纳,获得10
8秒前
Hello应助hf采纳,获得10
8秒前
8秒前
豆丁完成签到,获得积分10
9秒前
9秒前
10秒前
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672