Analysis of statistical properties of variables in log data for advanced anomaly detection in cyber security

异常检测 变量(数学) 计算机科学 事件(粒子物理) 数据挖掘 数据类型 离群值 假阳性悖论 数学 人工智能 数学分析 物理 量子力学 程序设计语言
作者
Markus Wurzenberger,Georg Höld,Max Landauer,Florian Skopik
出处
期刊:Computers & Security [Elsevier]
卷期号:137: 103631-103631 被引量:8
标识
DOI:10.1016/j.cose.2023.103631
摘要

Log lines consist of static parts that characterize their structure and enable assignment of event types, and event parameters, i.e., variable parts that provide specific information on system processes, such as host and user names, IP addresses, and file operations. Many detection approaches only focus on anomalous event type occurrences, i.e., they parse log lines to derive unique event identifiers and subsequently detect anomalies in event sequences or event count vectors, but neglect variable parts of log lines entirely during analysis. This is especially problematic, when monitoring strongly structured log data that contains only a small number of distinct event types, for example, logs that consist of strict key value pairs, i.e., parameters that occur consistently throughout all log lines, such as it is case in access and audit logs. Thus, novel approaches are required, which focus on analysis of log lines' variable parts. In this paper, we propose the variable type detector (VTD), a novel unsupervised approach that autonomously analyzes variable log line parts to enable anomaly detection. It assigns data types to each variable, which also include probability distributions for discrete and continuous variables. The VTD raises an alarm if a variable's data type changes. Furthermore, it implements a robust indicator function that reduces false positives by tracking the data type history of each variable and reports only significant data type changes. Additionally, an event indicator enables event-based anomaly detection by taking into account the data types of all variables of a single event type. The evaluation conducted on open-source log data, demonstrates the effectiveness of the VTD compared to conventional anomaly detection approaches, such as time series analysis and PCA. Consequently, the VTD acts as a solution that extends the intrusion detection capabilities of security information and event management (SIEM) and integrates with modern concepts of endpoint detection and response (EDR) and extended detection and responses (XDR), while simultaneously serving as an asset for process monitoring that supports user and entity behavior analytics (UEBA).

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zx完成签到,获得积分10
刚刚
Criminology34发布了新的文献求助300
1秒前
2秒前
1177发布了新的文献求助30
2秒前
风雅颂完成签到,获得积分10
2秒前
棋士应助给你吃一个屁采纳,获得10
3秒前
儒雅的奇异果完成签到,获得积分10
3秒前
3秒前
4秒前
4秒前
5秒前
Henvy完成签到,获得积分10
5秒前
5秒前
QingyuShang完成签到,获得积分10
5秒前
Redback应助lq采纳,获得20
6秒前
李健应助典雅的捕采纳,获得10
6秒前
量子星尘发布了新的文献求助10
6秒前
7秒前
8秒前
小芙爱雪碧完成签到 ,获得积分10
8秒前
9秒前
10秒前
11秒前
苗苗043完成签到,获得积分10
12秒前
爆米花应助关23采纳,获得10
12秒前
英俊的铭应助1177采纳,获得10
12秒前
13秒前
15秒前
15秒前
高挑的白旋风完成签到,获得积分10
15秒前
西海京完成签到 ,获得积分10
16秒前
16秒前
科研小白完成签到,获得积分10
17秒前
17秒前
欣喜的向日葵完成签到,获得积分10
17秒前
18秒前
19秒前
senquana发布了新的文献求助10
19秒前
量子星尘发布了新的文献求助10
19秒前
李好发布了新的文献求助10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Encyclopedia of the Human Brain Second Edition 8000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Chemistry and Biochemistry: Research Progress Vol. 7 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5684108
求助须知:如何正确求助?哪些是违规求助? 5035205
关于积分的说明 15183583
捐赠科研通 4843435
什么是DOI,文献DOI怎么找? 2596688
邀请新用户注册赠送积分活动 1549396
关于科研通互助平台的介绍 1507893