Analysis of statistical properties of variables in log data for advanced anomaly detection in cyber security

异常检测 变量(数学) 计算机科学 事件(粒子物理) 数据挖掘 数据类型 离群值 假阳性悖论 数学 人工智能 数学分析 物理 量子力学 程序设计语言
作者
Markus Wurzenberger,Georg Höld,Max Landauer,Florian Skopik
出处
期刊:Computers & Security [Elsevier]
卷期号:137: 103631-103631 被引量:8
标识
DOI:10.1016/j.cose.2023.103631
摘要

Log lines consist of static parts that characterize their structure and enable assignment of event types, and event parameters, i.e., variable parts that provide specific information on system processes, such as host and user names, IP addresses, and file operations. Many detection approaches only focus on anomalous event type occurrences, i.e., they parse log lines to derive unique event identifiers and subsequently detect anomalies in event sequences or event count vectors, but neglect variable parts of log lines entirely during analysis. This is especially problematic, when monitoring strongly structured log data that contains only a small number of distinct event types, for example, logs that consist of strict key value pairs, i.e., parameters that occur consistently throughout all log lines, such as it is case in access and audit logs. Thus, novel approaches are required, which focus on analysis of log lines' variable parts. In this paper, we propose the variable type detector (VTD), a novel unsupervised approach that autonomously analyzes variable log line parts to enable anomaly detection. It assigns data types to each variable, which also include probability distributions for discrete and continuous variables. The VTD raises an alarm if a variable's data type changes. Furthermore, it implements a robust indicator function that reduces false positives by tracking the data type history of each variable and reports only significant data type changes. Additionally, an event indicator enables event-based anomaly detection by taking into account the data types of all variables of a single event type. The evaluation conducted on open-source log data, demonstrates the effectiveness of the VTD compared to conventional anomaly detection approaches, such as time series analysis and PCA. Consequently, the VTD acts as a solution that extends the intrusion detection capabilities of security information and event management (SIEM) and integrates with modern concepts of endpoint detection and response (EDR) and extended detection and responses (XDR), while simultaneously serving as an asset for process monitoring that supports user and entity behavior analytics (UEBA).

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
斯文的听南完成签到 ,获得积分10
1秒前
平常叫兽完成签到,获得积分20
1秒前
2秒前
我是老大应助跳跃的煜祺采纳,获得10
3秒前
den发布了新的文献求助10
3秒前
4秒前
4秒前
爱喝芬达完成签到,获得积分10
4秒前
量子星尘发布了新的文献求助10
5秒前
5秒前
个性白开水完成签到,获得积分10
5秒前
fedehe发布了新的文献求助10
6秒前
shi333y完成签到,获得积分10
6秒前
7秒前
tutulunzi完成签到,获得积分10
7秒前
赵鑫宇发布了新的文献求助10
8秒前
芥末奶半糖加冰完成签到,获得积分10
8秒前
minbio发布了新的文献求助10
9秒前
9秒前
nong12123完成签到,获得积分10
10秒前
11秒前
Maple完成签到,获得积分10
12秒前
又村完成签到 ,获得积分10
12秒前
12秒前
坚定珍完成签到,获得积分10
12秒前
bkagyin应助faith采纳,获得30
13秒前
13秒前
14秒前
所所应助淡然的青旋采纳,获得10
14秒前
15秒前
kxm发布了新的文献求助10
15秒前
ttx完成签到,获得积分10
15秒前
TT发布了新的文献求助10
16秒前
冬日空虚完成签到,获得积分10
16秒前
orixero应助爱学习的超采纳,获得10
17秒前
领导范儿应助怕黑犀牛采纳,获得10
17秒前
小雨滴完成签到,获得积分10
18秒前
11马发布了新的文献求助10
18秒前
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
碳中和关键技术丛书--二氧化碳加氢 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5660493
求助须知:如何正确求助?哪些是违规求助? 4834344
关于积分的说明 15090899
捐赠科研通 4819088
什么是DOI,文献DOI怎么找? 2579076
邀请新用户注册赠送积分活动 1533600
关于科研通互助平台的介绍 1492361