Identification of Conformational Variants for Bradykinin Biomarker Peptides from a Biofluid Using a Nanopore and Machine Learning

生物标志物 纳米孔 缓激肽 计算生物学 化学 人口 鉴定(生物学) 纳米技术 生物化学 生物 材料科学 医学 植物 环境卫生 受体
作者
Sandra J. Greive,Laurent Bacri,Benjamin Cressiot,Juan Pelta
出处
期刊:ACS Nano [American Chemical Society]
卷期号:18 (1): 539-550 被引量:22
标识
DOI:10.1021/acsnano.3c08433
摘要

There is a current need to develop methods for the sensitive detection of peptide biomarkers in complex mixtures of molecules, such as biofluids, to enable early disease detection. Moreover, to our knowledge, there is currently no detection method capable of identifying the different conformations of a peptide biomarker differing by a single amino acid. Single-molecule nanopore sensing promises to provide this level of resolution. In order to be able to identify these differences in a biofluid such as serum, it is necessary to carefully characterize electrical parameters to obtain specific signatures of each biomarker population observed. We are interested here in a family of peptide biomarkers, kinins such as bradykinin and des-Arg9 bradykinin, that are involved in many disabling pathologies (allergy, asthma, angioedema, sepsis, or cancer). We show the proof of concept for direct identification of these biomarkers in serum at the single-molecule level using a protein nanopore. Each peptide exhibits two unique electrical signatures attributed to specific conformations in bulk. The same signatures are found in serum, allowing their discrimination and identification in a complex mixture such as biofluid. To extend the utility of our experimental results, we developed a principal component analysis approach to define the most relevant electrical parameters for their identification. Finally, we used semisupervised classification to assign each event type to a specific biomarker at physiological serum concentration. In the future, single-molecule scale analysis of peptide biomarkers using a powerful nanopore coupled with machine learning will facilitate the identification and quantification of other clinically relevant biomarkers from biofluids.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lyt完成签到,获得积分10
刚刚
金色琥珀完成签到,获得积分10
刚刚
英姑应助落对采纳,获得10
1秒前
123完成签到,获得积分10
1秒前
是菜狗子啊完成签到,获得积分10
1秒前
生动若之发布了新的文献求助10
2秒前
漂亮凌旋完成签到,获得积分10
2秒前
饱满的尔云完成签到,获得积分10
2秒前
大个应助高山采纳,获得10
3秒前
小刘完成签到,获得积分10
3秒前
3秒前
5秒前
哈牛发布了新的文献求助30
5秒前
5秒前
5秒前
mou发布了新的文献求助10
6秒前
脑洞疼应助zzzzqqqq采纳,获得10
6秒前
6秒前
852应助卢本伟牛逼采纳,获得10
6秒前
7秒前
毛豆应助欢呼的爆米花采纳,获得10
7秒前
7秒前
NexusExplorer应助水柚子采纳,获得10
7秒前
9秒前
小静发布了新的文献求助10
9秒前
刚得力完成签到,获得积分10
9秒前
10秒前
sxx发布了新的文献求助10
10秒前
10秒前
王木木完成签到 ,获得积分10
10秒前
11秒前
方硕发布了新的文献求助30
11秒前
Hysen_L完成签到,获得积分10
12秒前
JamesPei应助笑笑采纳,获得10
12秒前
xx发布了新的文献求助10
12秒前
liukang172发布了新的文献求助10
13秒前
orixero应助斯人采纳,获得10
13秒前
南霖完成签到,获得积分10
14秒前
六便士完成签到,获得积分10
14秒前
14秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Essentials of Performance Analysis in Sport 500
Measure Mean Linear Intercept 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3730023
求助须知:如何正确求助?哪些是违规求助? 3274861
关于积分的说明 9989324
捐赠科研通 2990315
什么是DOI,文献DOI怎么找? 1641017
邀请新用户注册赠送积分活动 779534
科研通“疑难数据库(出版商)”最低求助积分说明 748237