RASnet: Recurrent Aggregation Neural Network for Safe and Efficient Drug Recommendation

药品 计算机科学 人工神经网络 人工智能 医学 药理学
作者
Qiang Zhu,Han Feng,Junping Liu,Yajie Meng,Xinrong Hu,Bangchao Wang
标识
DOI:10.2139/ssrn.4648636
摘要

Drug recommendation is one of the most important research topics in smart healthcare. Its goal is to provide a set of safe drug combinations based on the patient’s electrical medical records(EHR). Drug recommendation is challenging since it is difficult to obtain an appropriate representation of patients' health states from these personalized historical records. Meanwhile, drug recommendation must prioritize the safety of drug combinations because drug-drug interactions(DDI) can result in side effects. In order to address these issues, we propose a novel recurrent aggregation neural network for safe drug recommendation, called RASNet. RASNet introduces a straightforward but efficient recurrent aggregation neural network to capture historical records related to the patient’s health state of current visit, which can improve the performance of EHR-based healthy state modeling, particularly in cases when the patient’s condition changes periodically. Furthermore, this paper presents a novel exponential controller for DDI to enhance the safety of drug combinations. Our proposed DDI controller not only balances the DDI rate between the safety and accuracy of drug recommendation but also ensures performance even when the DDI rate is low. Extensive experiments on the MIMIC-III dataset demonstrate that RASNet achieves state-of-the-art performance. Moreover, RASNet exhibits excellent efficiency and safety in drug recommendation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李子木发布了新的文献求助10
1秒前
天青色等烟雨完成签到 ,获得积分10
1秒前
鸿鲤发布了新的文献求助10
2秒前
张三关注了科研通微信公众号
2秒前
2秒前
5秒前
lxd发布了新的文献求助10
9秒前
9秒前
10秒前
在水一方应助科研的师弟采纳,获得10
10秒前
刘晓倩发布了新的文献求助10
10秒前
老解完成签到 ,获得积分10
11秒前
11秒前
12秒前
思源应助坚定的可愁采纳,获得10
14秒前
XHY123发布了新的文献求助10
14秒前
15秒前
坚强丹雪完成签到,获得积分10
16秒前
蓝天白云发布了新的文献求助10
16秒前
yuhang完成签到,获得积分10
16秒前
洛苏完成签到,获得积分10
17秒前
吴军霄完成签到,获得积分10
17秒前
666完成签到,获得积分10
17秒前
wanci应助深情代玉采纳,获得10
21秒前
不配.应助小郭采纳,获得10
22秒前
wyy完成签到,获得积分10
23秒前
XHY123完成签到,获得积分10
23秒前
zy完成签到 ,获得积分10
25秒前
25秒前
陶醉的翅膀完成签到,获得积分10
26秒前
茉莉园完成签到,获得积分10
27秒前
科目三应助wyy采纳,获得10
27秒前
孤独的匕完成签到,获得积分10
28秒前
社牛小柯完成签到,获得积分10
29秒前
31秒前
大鱼完成签到,获得积分10
31秒前
zzz发布了新的文献求助10
31秒前
脑洞疼应助谭你脑瓜崩采纳,获得10
33秒前
云云完成签到 ,获得积分10
35秒前
大鱼发布了新的文献求助10
36秒前
高分求助中
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137977
求助须知:如何正确求助?哪些是违规求助? 2788926
关于积分的说明 7789136
捐赠科研通 2445326
什么是DOI,文献DOI怎么找? 1300288
科研通“疑难数据库(出版商)”最低求助积分说明 625878
版权声明 601046