作者
Hongna Qiao,Xiaohui Yu,Weiqiang Kong,Ehsan Baniasadi,Bin Yang
摘要
Energy storage is a crucial solution for the intermittency and instability of renewable energy. Carnot batteries, a novel electrical energy storage technology, promise to address the challenges of renewable electrical energy storage worldwide. Rankine-based Carnot batteries, which are geographically unconstrained and effectively store energy at low temperatures, have attracted considerable attention in recent years. In this study, a mathematical model was developed, and a multi-objective optimization with power-to-power efficiency, exergy efficiency, and levelized cost of storage was performed. Moreover, the investment cost and exergy loss of the optimized system components were investigated in detail and analyzed. The results showed that the optimal power-to-power-efficiency, exergy efficiency, and levelized cost of the storage system can be achieved at 60.3%, 33%, and 0.373 $/kWh based on single-objective optimization, and the operating parameters of the proposed system are different. Therefore, there is a strong trade-off relationship between the three objective functions mentioned above. Under the same weighting for the two approaches, they are 25.8%, 23%, and 0.437 $/kWh, and 39.3%, 29.1%, and 0.549 $/kWh, respectively. Furthermore, this study observed that the exergy destruction in the charge mode was nearly 95 kW larger than that in the discharge mode, and the exergy destruction of the throttle valve was the largest at 95.83 kW, accounting for 28.32%. The expander was the component with the highest cost (35.84% of the total cost) in the proposed system, followed by the compressor.