Novel adaptive DCOPA using dynamic weighting for vector of performances indicators optimization of IoT networks

计算机科学 聚类分析 加权 可扩展性 正确性 数据挖掘 分布式计算 协议(科学) 算法 人工智能 数据库 医学 替代医学 病理 放射科
作者
Foudil Mir,Farid Meziane
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:: 123212-123212 被引量:5
标识
DOI:10.1016/j.eswa.2024.123212
摘要

Clustering in the Internet of Things (IoT) involves organizing devices into groups to streamline network management and optimize resource utilization, including Internet connections, energy usage, coverage, quality of service, and connectivity. DCOPA (A Distributed Clustering Based on Objects Performances Aggregation for Hierarchical Communications in IoT Applications) is a recent distributed clustering protocol based on a timer for cluster formation where the election of Cluster Heads (CHs) is modeled as a multicriteria problem. In this paper, three contributions are presented. Firstly, the DCOPA protocol is analyzed with a focus on its multi-criteria aggregation function T(i) which directly contributes to the election of the CHs and the formation of the network’s clusters. This is then followed by an in-depth analysis of the impact and the variation of the weights assigned to the two aggregated criteria which are the energy and the distance from the base station. A verification of the scalability, load balancing and distribution of the clusters and CHs will follow. Secondly, a new formal notation for the performance analysis, specifically focusing on the mortality and lifetime based on the Vector of Performance Indicators (VPI), will be introduced for IoT. As a third contribution, a revised version of DCOPA is introduced called ADCOPA (Adaptive DCOPA Using Dynamic Weighting for Vector of Performances Indicators Optimization of IoT Networks). ADCOPA is based on a new property which is the dynamicity or the variability of the weights of the criteria used in the election function of CHs. The simulation results show that the ADCOPA algorithm, which dynamically adjusts the weights of the criteria during the network’s lifetime, outperforms the DCOPA algorithm. The latter uses static weights for the criteria that remain unchanged for the entire lifetime of the network. This confirms that the ability to dynamically adjust the weighting of the criteria is an important factor in achieving better performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小波发布了新的文献求助10
刚刚
刚刚
刚刚
可爱的函函应助雪白起眸采纳,获得10
1秒前
SLQ发布了新的文献求助10
1秒前
shitou完成签到,获得积分10
2秒前
自信雅琴发布了新的文献求助10
2秒前
默然的歌完成签到 ,获得积分10
2秒前
2秒前
璇儿发布了新的文献求助10
3秒前
万能图书馆应助顺心迎梦采纳,获得10
3秒前
搜集达人应助欢呼睿渊采纳,获得10
3秒前
不理不理左卫门完成签到,获得积分10
4秒前
补喵发布了新的文献求助10
5秒前
瓷穹发布了新的文献求助10
8秒前
火火完成签到,获得积分20
8秒前
fan完成签到,获得积分20
8秒前
海燕完成签到,获得积分10
8秒前
种花家的兔子完成签到,获得积分10
9秒前
10秒前
不易BY完成签到,获得积分10
10秒前
爆米花应助派大星采纳,获得10
11秒前
12秒前
12秒前
嘿嘿完成签到,获得积分10
13秒前
14秒前
大胆访梦发布了新的文献求助10
15秒前
yiwan完成签到,获得积分10
16秒前
16秒前
16秒前
19秒前
NexusExplorer应助南楼小阁主采纳,获得10
20秒前
幸运小怪兽完成签到,获得积分10
20秒前
隐形曼青应助Aliothae采纳,获得10
20秒前
dw发布了新的文献求助10
20秒前
20秒前
waynechang发布了新的文献求助30
21秒前
我爱学习完成签到,获得积分10
21秒前
23秒前
冷静的静蕾完成签到,获得积分10
24秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3135520
求助须知:如何正确求助?哪些是违规求助? 2786434
关于积分的说明 7777268
捐赠科研通 2442340
什么是DOI,文献DOI怎么找? 1298524
科研通“疑难数据库(出版商)”最低求助积分说明 625143
版权声明 600847