Novel adaptive DCOPA using dynamic weighting for vector of performances indicators optimization of IoT networks

计算机科学 聚类分析 加权 可扩展性 正确性 数据挖掘 分布式计算 协议(科学) 算法 人工智能 数据库 医学 替代医学 病理 放射科
作者
Foudil Mir,Farid Meziane
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:: 123212-123212 被引量:5
标识
DOI:10.1016/j.eswa.2024.123212
摘要

Clustering in the Internet of Things (IoT) involves organizing devices into groups to streamline network management and optimize resource utilization, including Internet connections, energy usage, coverage, quality of service, and connectivity. DCOPA (A Distributed Clustering Based on Objects Performances Aggregation for Hierarchical Communications in IoT Applications) is a recent distributed clustering protocol based on a timer for cluster formation where the election of Cluster Heads (CHs) is modeled as a multicriteria problem. In this paper, three contributions are presented. Firstly, the DCOPA protocol is analyzed with a focus on its multi-criteria aggregation function T(i) which directly contributes to the election of the CHs and the formation of the network’s clusters. This is then followed by an in-depth analysis of the impact and the variation of the weights assigned to the two aggregated criteria which are the energy and the distance from the base station. A verification of the scalability, load balancing and distribution of the clusters and CHs will follow. Secondly, a new formal notation for the performance analysis, specifically focusing on the mortality and lifetime based on the Vector of Performance Indicators (VPI), will be introduced for IoT. As a third contribution, a revised version of DCOPA is introduced called ADCOPA (Adaptive DCOPA Using Dynamic Weighting for Vector of Performances Indicators Optimization of IoT Networks). ADCOPA is based on a new property which is the dynamicity or the variability of the weights of the criteria used in the election function of CHs. The simulation results show that the ADCOPA algorithm, which dynamically adjusts the weights of the criteria during the network’s lifetime, outperforms the DCOPA algorithm. The latter uses static weights for the criteria that remain unchanged for the entire lifetime of the network. This confirms that the ability to dynamically adjust the weighting of the criteria is an important factor in achieving better performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
鳗鱼灵寒发布了新的文献求助10
1秒前
shatang发布了新的文献求助10
1秒前
lesyeuxdexx完成签到 ,获得积分10
3秒前
4秒前
程琳完成签到,获得积分20
5秒前
6秒前
卓哥发布了新的文献求助10
6秒前
科研通AI5应助sansan采纳,获得10
7秒前
7秒前
7秒前
脑洞疼应助杰森斯坦虎采纳,获得10
7秒前
9秒前
10秒前
研友_QQC完成签到,获得积分10
10秒前
NeuroWhite完成签到,获得积分10
10秒前
10秒前
搜索v完成签到,获得积分10
11秒前
liuchuck完成签到 ,获得积分10
11秒前
11秒前
11秒前
猫独秀完成签到,获得积分10
11秒前
13秒前
buno应助yuefeng采纳,获得10
13秒前
yiming完成签到,获得积分10
13秒前
落落发布了新的文献求助10
14秒前
清秋若月完成签到 ,获得积分10
14秒前
14秒前
呵呵呵呵完成签到,获得积分10
15秒前
15秒前
远方发布了新的文献求助10
16秒前
zxc111关注了科研通微信公众号
16秒前
17秒前
nanhe698发布了新的文献求助10
17秒前
Huang完成签到,获得积分10
17秒前
碳土不凡完成签到 ,获得积分10
18秒前
18秒前
淡淡采白发布了新的文献求助10
19秒前
19秒前
20秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808