Background and objective Researchers have put in significant laboratory time and effort in measuring the permeability coefficient (Kp) of xenobiotics. To develop alternative approaches to this labour-intensive procedure, predictive models have been employed by scientists to describe the transport of xenobiotics across the skin. Most quantitative structure-permeability relationship (QSPR) models are derived statistically from experimental data. Recently, artificial intelligence-based computational drug delivery has attracted tremendous interest. Deep learning is an umbrella term for machine-learning algorithms consisting of deep neural networks (DNNs). Distinct network architectures, like convolutional neural networks (CNNs), feedforward neural networks (FNNs), and recurrent neural networks (RNNs), can be employed for prediction.