石墨
材料科学
阳极
插层(化学)
扩散
功率密度
电化学
化学工程
钾离子电池
电极
吸附
钾
纳米技术
无机化学
复合材料
功率(物理)
热力学
物理化学
冶金
化学
工程类
物理
磷酸钒锂电池
作者
Yuting Zhang,Baoshu Yin,Mingchan Ma,Boshi Cheng,Lin Zhu,Hongqiang Xu,Qian Wu,Shasha Tang,Haibing He
标识
DOI:10.1016/j.mtener.2023.101315
摘要
Graphite anode for potassium-ion batteries suffers poor rate capability because of the sluggish diffusion kinetics of K+. According to the rate law of chemical reactions, enrichment of K+ on the outer layer of graphite anode is expected to improve the rate capability. However, the surface of graphite is too smooth to adsorb adequate K+ to enhance rate capability. Herein, MoS2 is coated on exfoliated graphite to enrich the concentration of K+ on the surface of EG by forming K2S in high-voltage region, leading to an extremely high diffusion coefficient of up to 1000 times than that of bare graphite at the bottleneck stage, which accelerates the reaction rate of electrochemical intercalation process. Consequently, the EG/MoS2 electrode exhibits superior rate performances (125 mAh/g at 3.2 A/g), which is 11 times higher than that of EG. Moreover, the specific capacity of EG/MoS2 is 169 mAh/g at 1.6 A/g below 0.36 V, which is almost 25 times higher than that of bare EG (7 mAh/g). Our study provides new fundamental insights to boost power density of the anodes for PIBs without trading off energy density.
科研通智能强力驱动
Strongly Powered by AbleSci AI