Simultaneous Conductivity and Permeability Reconstructions for Electromagnetic Tomography Using Deep Learning

断层摄影术 电导率 迭代重建 磁导率 分割 计算机科学 人工智能 均方误差 材料科学 算法 模式识别(心理学) 数学 物理 光学 统计 生物 量子力学 遗传学
作者
Wenbiao Zhang,Zexin Zhu,Yijian Geng
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:72: 1-11 被引量:5
标识
DOI:10.1109/tim.2023.3268444
摘要

Electromagnetic tomography (EMT) is a research hotspot in electrical tomography, which has wide application prospect for multiphase flow measurement. The existing EMT usually visualizes the distributions of conductivity or permeability separately. In order to realize the simultaneous imaging of different electromagnetic characteristics in the measurement area and improve the quality of the reconstructed images, a deep learning based multi-parameter EMT method is proposed in this paper. Firstly, the information from the mutual inductance and magnetic induction intensity of the imaging area is measured respectively. Then, the Landweber algorithm is used to reconstruct the initial conductivity and permeability images using above measurements. Finally, the initial images are input into the improved DeepLabv3 network for image segmentation and the images of conductivity and permeability distributions with clear boundary and accurate size and position are output. The images reconstructed by the improved DeepLabv3 network are compared with those from traditional methods, UNet++, LinkNet and PAN networks through the simulation and experiment. The experimental results show that our method achieves RMSE of 0.1667, CC of 0.6984 and SSIM of 0.6542 on average for permeability distribution reconstruction, and RMSE of 0.1907, CC of 0.7791 and SSIM of 0.7538 on average for conductivity distribution reconstruction. These results prove that the proposed method can simultaneously obtain the conductivity and permeability distributions with high-quality reconstructed images. Our code is publicly available at https://github.com/Tougerr/Landweber-DLv3.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
忧虑的代芙完成签到,获得积分10
1秒前
王多鱼完成签到,获得积分10
1秒前
罗婕完成签到,获得积分10
1秒前
耍酷蛋挞发布了新的文献求助10
2秒前
2秒前
3秒前
Liar应助迎难而上采纳,获得20
3秒前
3秒前
3秒前
sff发布了新的文献求助10
3秒前
4秒前
HEROTREE发布了新的文献求助10
4秒前
makkkk完成签到 ,获得积分10
5秒前
漂亮雅寒关注了科研通微信公众号
5秒前
5秒前
5秒前
爆米花应助登登采纳,获得10
6秒前
甾醇完成签到,获得积分20
6秒前
6秒前
6秒前
大佑完成签到,获得积分20
6秒前
8R60d8应助舒适忆枫采纳,获得10
6秒前
7秒前
7秒前
7秒前
嗨嗨发布了新的文献求助10
8秒前
五十个小学生完成签到,获得积分10
8秒前
聪明的幻露完成签到 ,获得积分10
8秒前
111发布了新的文献求助10
8秒前
ccq完成签到 ,获得积分10
9秒前
大佑发布了新的文献求助10
9秒前
zhu完成签到,获得积分10
9秒前
wly发布了新的文献求助10
11秒前
shilong.yang发布了新的文献求助100
11秒前
Seyon发布了新的文献求助10
11秒前
Yichel完成签到,获得积分10
11秒前
赘婿应助18746005898采纳,获得10
12秒前
FashionBoy应助猫猫熊采纳,获得10
12秒前
12秒前
zhun发布了新的文献求助10
12秒前
高分求助中
Medicina di laboratorio. Logica e patologia clinica 600
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Sarcolestes leedsi Lydekker, an ankylosaurian dinosaur from the Middle Jurassic of England 500
Machine Learning for Polymer Informatics 500
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
2024 Medicinal Chemistry Reviews 480
Women in Power in Post-Communist Parliaments 450
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3217353
求助须知:如何正确求助?哪些是违规求助? 2866617
关于积分的说明 8152518
捐赠科研通 2533308
什么是DOI,文献DOI怎么找? 1366190
科研通“疑难数据库(出版商)”最低求助积分说明 644710
邀请新用户注册赠送积分活动 617698