亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Likelihood Analysis of Imperfect Data

推论 贝叶斯推理 计算机科学 基准推理 贝叶斯概率 不完美的 模棱两可 机器学习 人工智能 似然原理 数据挖掘 贝叶斯统计 计量经济学 似然函数 数学 算法 估计理论 拟极大似然 哲学 程序设计语言 语言学
作者
Jian‐Bo Yang,Dong‐Ling Xu,Xiaobin Xu,Chao Fu
出处
期刊:IEEE transactions on systems, man, and cybernetics [Institute of Electrical and Electronics Engineers]
卷期号:53 (8): 5046-5057 被引量:15
标识
DOI:10.1109/tsmc.2023.3262585
摘要

This article investigates how to make use of imperfect data gathered from different sources for inference and decision making. Based on Bayesian inference and the principle of likelihood, a likelihood analysis method is proposed for acquisition of evidence from imperfect data to enable likelihood inference within the framework of the evidential reasoning (ER). The nature of this inference process is underpinned by the new necessary and sufficient conditions that when a piece of evidence is acquired from a data source it should be represented as a normalized likelihood distribution to capture the essential evidential meanings of data. While the explanation of sufficiency of the conditions is straightforward based on the principle of likelihood, their necessity needs to be established by following the principle of Bayesian inference. It is also revealed that the inference process enabled by the ER rule under the new conditions constitutes a likelihood inference process, which becomes equivalent to Bayesian inference when there is no ambiguity in data and a prior distribution can be obtained as a piece of independent evidence. Two examples in decision analysis under uncertainty and a case study about fault diagnosis for railway track maintenance management are examined to demonstrate the steps of implementation and potential applications of the likelihood inference process.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
8秒前
9秒前
科研通AI2S应助科研通管家采纳,获得10
9秒前
我是老大应助科研通管家采纳,获得10
9秒前
小样完成签到 ,获得积分20
11秒前
连安阳完成签到,获得积分10
26秒前
JamesPei应助卡卡采纳,获得10
36秒前
杨秋艳完成签到 ,获得积分20
46秒前
努力的淼淼完成签到 ,获得积分10
53秒前
1分钟前
伊力扎提发布了新的文献求助10
1分钟前
了晨完成签到 ,获得积分10
1分钟前
simon完成签到 ,获得积分10
1分钟前
李爱国应助lulu采纳,获得10
1分钟前
chengshu666发布了新的文献求助10
1分钟前
玉玉发布了新的文献求助10
1分钟前
如意葶完成签到,获得积分10
1分钟前
1分钟前
lulu发布了新的文献求助10
1分钟前
打打应助玉玉采纳,获得10
1分钟前
chengshu666发布了新的文献求助10
1分钟前
如意葶发布了新的文献求助10
1分钟前
清风明月完成签到 ,获得积分10
2分钟前
完美世界应助科研通管家采纳,获得10
2分钟前
2分钟前
卡卡发布了新的文献求助10
2分钟前
溪灵发布了新的文献求助20
2分钟前
啊啊啊完成签到 ,获得积分10
2分钟前
2分钟前
玉玉完成签到 ,获得积分20
2分钟前
量子星尘发布了新的文献求助10
2分钟前
ttkx完成签到,获得积分10
2分钟前
3分钟前
杨光发布了新的文献求助10
3分钟前
江流儿完成签到 ,获得积分10
3分钟前
SciGPT应助杨光采纳,获得10
3分钟前
3分钟前
3分钟前
lcw1998完成签到 ,获得积分10
3分钟前
无限青槐发布了新的文献求助10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 550
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5622199
求助须知:如何正确求助?哪些是违规求助? 4707132
关于积分的说明 14938831
捐赠科研通 4769058
什么是DOI,文献DOI怎么找? 2552198
邀请新用户注册赠送积分活动 1514325
关于科研通互助平台的介绍 1475038