High resolution landslide susceptibility mapping using ensemble machine learning and geospatial big data

山崩 地理空间分析 计算机科学 支持向量机 人工智能 随机森林 机器学习 混淆矩阵 集成学习 数据挖掘 集合预报 稳健性(进化) 遥感 地质学 岩土工程 生物化学 化学 基因
作者
Nirdesh Sharma,Manabendra Saharia,G. V. Ramana
出处
期刊:Catena [Elsevier]
卷期号:235: 107653-107653
标识
DOI:10.1016/j.catena.2023.107653
摘要

Landslide susceptibility represents the potential of slope failure for given geo-environmental conditions. The existing landslide susceptibility maps suffer from several limitations, such as being based on limited data, heuristic methodologies, low spatial resolution, and small areas of interest. In this study, we overcome all these limitations by developing a probabilistic framework that combines imbalance handling and ensemble machine learning for landslide susceptibility mapping. We employ a combination of One -Sided Selection and Support Vector Machine Synthetic Minority Oversampling Technique (SVMSMOTE) to eliminate class imbalance and develop smaller representative data from big data for model training. A blending ensemble approach using hyperparameter tuned Artificial Neural Networks, Random Forests, and Support Vector Machine, is employed to reduce the uncertainty associated with a single model. The methodology provides the landslide susceptibility probability and a landslide susceptibility class. A thorough evaluation of the framework is performed using receiver operating characteristic curves, confusion matrices, and the derivatives of confusion matrices. This framework is used to develop India's first national-scale machine learning based landslide susceptibility map. The landslide database is carefully curated from global and local inventories, and the landslide conditioning factors are selected from a multitude of geophysical and climatological variables. The Indian Landslide Susceptibility Map (ILSM) is developed at a resolution of 0.001° (∼100 m) and is classified into five classes: very low, low, medium, high, and very high. We report an accuracy of 95.73 %, sensitivity of 97.08 %, and matthews correlation coefficient (MCC) of 0.915 on test data, demonstrating the accuracy, robustness, and generalizability of the framework for landslide identification. The model classified 4.75 % area in India as very highly susceptible to landslides and detected new landslide susceptible zones in the Eastern Ghats, hitherto unreported in the government landslide records. The ILSM is expected to aid policymaking in disaster risk reduction and developing landslide prediction models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
2秒前
2秒前
2秒前
Doctor_Peng完成签到,获得积分10
2秒前
zz完成签到,获得积分10
2秒前
tesla发布了新的文献求助10
2秒前
3秒前
3秒前
3秒前
4秒前
万能图书馆应助聂学雨采纳,获得10
4秒前
研友_ZzrWKZ完成签到 ,获得积分10
4秒前
科研通AI2S应助xiong采纳,获得10
5秒前
6秒前
年轻就要气盛完成签到,获得积分10
6秒前
iufan发布了新的文献求助10
6秒前
朝北完成签到 ,获得积分10
6秒前
发发完成签到 ,获得积分10
6秒前
等后来呢发布了新的文献求助10
7秒前
鳗鱼新之发布了新的文献求助10
7秒前
宝宝巴士驾驶员完成签到,获得积分10
7秒前
ECHO发布了新的文献求助10
7秒前
年轻寒蕾完成签到,获得积分10
8秒前
田叫兽完成签到,获得积分10
8秒前
丘比特应助Aiden采纳,获得10
8秒前
一朵云完成签到 ,获得积分10
9秒前
心之搁浅完成签到,获得积分10
10秒前
10秒前
nightynight发布了新的文献求助10
11秒前
Charles_Rowan发布了新的文献求助10
11秒前
11秒前
11秒前
12秒前
魏笑白完成签到 ,获得积分10
14秒前
drs发布了新的文献求助10
14秒前
jun完成签到 ,获得积分10
14秒前
爱睡午觉完成签到,获得积分10
14秒前
细腻的山水完成签到,获得积分10
15秒前
活泼的夏旋完成签到 ,获得积分10
15秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
A Dissection Guide & Atlas to the Rabbit 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3134421
求助须知:如何正确求助?哪些是违规求助? 2785363
关于积分的说明 7771655
捐赠科研通 2440968
什么是DOI,文献DOI怎么找? 1297647
科研通“疑难数据库(出版商)”最低求助积分说明 625023
版权声明 600812