High resolution landslide susceptibility mapping using ensemble machine learning and geospatial big data

山崩 地理空间分析 计算机科学 支持向量机 人工智能 随机森林 机器学习 混淆矩阵 集成学习 数据挖掘 集合预报 稳健性(进化) 遥感 地质学 岩土工程 生物化学 化学 基因
作者
Nirdesh Sharma,Manabendra Saharia,G. V. Ramana
出处
期刊:Catena [Elsevier BV]
卷期号:235: 107653-107653 被引量:35
标识
DOI:10.1016/j.catena.2023.107653
摘要

Landslide susceptibility represents the potential of slope failure for given geo-environmental conditions. The existing landslide susceptibility maps suffer from several limitations, such as being based on limited data, heuristic methodologies, low spatial resolution, and small areas of interest. In this study, we overcome all these limitations by developing a probabilistic framework that combines imbalance handling and ensemble machine learning for landslide susceptibility mapping. We employ a combination of One -Sided Selection and Support Vector Machine Synthetic Minority Oversampling Technique (SVMSMOTE) to eliminate class imbalance and develop smaller representative data from big data for model training. A blending ensemble approach using hyperparameter tuned Artificial Neural Networks, Random Forests, and Support Vector Machine, is employed to reduce the uncertainty associated with a single model. The methodology provides the landslide susceptibility probability and a landslide susceptibility class. A thorough evaluation of the framework is performed using receiver operating characteristic curves, confusion matrices, and the derivatives of confusion matrices. This framework is used to develop India's first national-scale machine learning based landslide susceptibility map. The landslide database is carefully curated from global and local inventories, and the landslide conditioning factors are selected from a multitude of geophysical and climatological variables. The Indian Landslide Susceptibility Map (ILSM) is developed at a resolution of 0.001° (∼100 m) and is classified into five classes: very low, low, medium, high, and very high. We report an accuracy of 95.73 %, sensitivity of 97.08 %, and matthews correlation coefficient (MCC) of 0.915 on test data, demonstrating the accuracy, robustness, and generalizability of the framework for landslide identification. The model classified 4.75 % area in India as very highly susceptible to landslides and detected new landslide susceptible zones in the Eastern Ghats, hitherto unreported in the government landslide records. The ILSM is expected to aid policymaking in disaster risk reduction and developing landslide prediction models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
没错完成签到,获得积分20
1秒前
Crh完成签到 ,获得积分10
1秒前
terminus完成签到,获得积分10
1秒前
平常的念柏完成签到,获得积分10
1秒前
1秒前
叶95完成签到 ,获得积分10
1秒前
2秒前
CipherSage应助乌龟娟采纳,获得10
2秒前
Andrew发布了新的文献求助10
2秒前
XinyuHuang发布了新的文献求助40
2秒前
领导范儿应助lqkcqmu采纳,获得10
3秒前
Sonia完成签到,获得积分10
3秒前
一禅完成签到 ,获得积分10
3秒前
在水一方应助1235774采纳,获得10
3秒前
4秒前
terminus发布了新的文献求助10
5秒前
5秒前
123123发布了新的文献求助10
5秒前
大可完成签到 ,获得积分10
6秒前
香蕉觅云应助Tong123采纳,获得10
7秒前
7秒前
小王啵啵发布了新的文献求助10
7秒前
李健的小迷弟应助MHX采纳,获得10
7秒前
7秒前
焦糖色发布了新的文献求助10
7秒前
可爱的菠萝完成签到,获得积分10
8秒前
aaaaa发布了新的文献求助10
8秒前
快乐婴完成签到,获得积分10
8秒前
眼睛大雨筠应助Cyber_relic采纳,获得50
9秒前
搜集达人应助宝儿柯察金采纳,获得10
9秒前
tianzhanggong完成签到,获得积分10
9秒前
xlbn完成签到,获得积分10
10秒前
10秒前
11秒前
壮观的翠芙完成签到,获得积分10
11秒前
11秒前
汉堡包应助佳哥闯天下采纳,获得10
11秒前
笑点低代萱完成签到,获得积分10
12秒前
JamesPei应助Lin采纳,获得10
12秒前
13秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Picture Books with Same-sex Parented Families: Unintentional Censorship 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3970632
求助须知:如何正确求助?哪些是违规求助? 3515261
关于积分的说明 11177794
捐赠科研通 3250448
什么是DOI,文献DOI怎么找? 1795314
邀请新用户注册赠送积分活动 875781
科研通“疑难数据库(出版商)”最低求助积分说明 805073