High resolution landslide susceptibility mapping using ensemble machine learning and geospatial big data

山崩 地理空间分析 计算机科学 支持向量机 人工智能 随机森林 机器学习 混淆矩阵 集成学习 数据挖掘 集合预报 稳健性(进化) 遥感 地质学 岩土工程 生物化学 化学 基因
作者
Nirdesh Sharma,Manabendra Saharia,G. V. Ramana
出处
期刊:Catena [Elsevier BV]
卷期号:235: 107653-107653 被引量:35
标识
DOI:10.1016/j.catena.2023.107653
摘要

Landslide susceptibility represents the potential of slope failure for given geo-environmental conditions. The existing landslide susceptibility maps suffer from several limitations, such as being based on limited data, heuristic methodologies, low spatial resolution, and small areas of interest. In this study, we overcome all these limitations by developing a probabilistic framework that combines imbalance handling and ensemble machine learning for landslide susceptibility mapping. We employ a combination of One -Sided Selection and Support Vector Machine Synthetic Minority Oversampling Technique (SVMSMOTE) to eliminate class imbalance and develop smaller representative data from big data for model training. A blending ensemble approach using hyperparameter tuned Artificial Neural Networks, Random Forests, and Support Vector Machine, is employed to reduce the uncertainty associated with a single model. The methodology provides the landslide susceptibility probability and a landslide susceptibility class. A thorough evaluation of the framework is performed using receiver operating characteristic curves, confusion matrices, and the derivatives of confusion matrices. This framework is used to develop India's first national-scale machine learning based landslide susceptibility map. The landslide database is carefully curated from global and local inventories, and the landslide conditioning factors are selected from a multitude of geophysical and climatological variables. The Indian Landslide Susceptibility Map (ILSM) is developed at a resolution of 0.001° (∼100 m) and is classified into five classes: very low, low, medium, high, and very high. We report an accuracy of 95.73 %, sensitivity of 97.08 %, and matthews correlation coefficient (MCC) of 0.915 on test data, demonstrating the accuracy, robustness, and generalizability of the framework for landslide identification. The model classified 4.75 % area in India as very highly susceptible to landslides and detected new landslide susceptible zones in the Eastern Ghats, hitherto unreported in the government landslide records. The ILSM is expected to aid policymaking in disaster risk reduction and developing landslide prediction models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刘丰完成签到 ,获得积分10
2秒前
郑桂庆完成签到 ,获得积分10
3秒前
zhang完成签到 ,获得积分10
3秒前
yuchen完成签到,获得积分10
4秒前
喜悦的水云完成签到 ,获得积分10
4秒前
5秒前
zhaokunfeng完成签到,获得积分10
5秒前
Y123发布了新的文献求助10
5秒前
wu完成签到,获得积分10
5秒前
高高诗柳完成签到 ,获得积分10
5秒前
王金豪完成签到,获得积分10
5秒前
LSS完成签到,获得积分10
5秒前
榜一大哥的负担完成签到 ,获得积分10
6秒前
Lucas应助qi0625采纳,获得10
6秒前
顾矜应助以筱采纳,获得10
7秒前
景清完成签到,获得积分10
7秒前
细心香烟完成签到 ,获得积分10
7秒前
hu完成签到 ,获得积分10
7秒前
HQ完成签到,获得积分10
7秒前
8秒前
水清木华完成签到,获得积分10
8秒前
9秒前
miao完成签到,获得积分20
9秒前
xyp_zjut应助学术乞丐采纳,获得10
9秒前
Lucas应助凉白开采纳,获得10
9秒前
体贴凌柏发布了新的文献求助10
10秒前
10秒前
10秒前
鹿子完成签到 ,获得积分10
10秒前
秋枫忆完成签到,获得积分10
12秒前
宋立发布了新的文献求助10
12秒前
孤独的AD钙完成签到,获得积分10
12秒前
13秒前
fang应助miao采纳,获得10
14秒前
星辰与月完成签到,获得积分10
14秒前
Pt-SACs发布了新的文献求助10
14秒前
安静无招完成签到 ,获得积分10
18秒前
lqphysics完成签到,获得积分10
19秒前
Jerry完成签到 ,获得积分10
19秒前
枕星发布了新的文献求助10
19秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038368
求助须知:如何正确求助?哪些是违规求助? 3576068
关于积分的说明 11374313
捐赠科研通 3305780
什么是DOI,文献DOI怎么找? 1819322
邀请新用户注册赠送积分活动 892672
科研通“疑难数据库(出版商)”最低求助积分说明 815029