亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

High resolution landslide susceptibility mapping using ensemble machine learning and geospatial big data

山崩 地理空间分析 计算机科学 支持向量机 人工智能 随机森林 机器学习 混淆矩阵 集成学习 数据挖掘 集合预报 稳健性(进化) 遥感 地质学 岩土工程 生物化学 化学 基因
作者
Nirdesh Sharma,Manabendra Saharia,G. V. Ramana
出处
期刊:Catena [Elsevier]
卷期号:235: 107653-107653 被引量:35
标识
DOI:10.1016/j.catena.2023.107653
摘要

Landslide susceptibility represents the potential of slope failure for given geo-environmental conditions. The existing landslide susceptibility maps suffer from several limitations, such as being based on limited data, heuristic methodologies, low spatial resolution, and small areas of interest. In this study, we overcome all these limitations by developing a probabilistic framework that combines imbalance handling and ensemble machine learning for landslide susceptibility mapping. We employ a combination of One -Sided Selection and Support Vector Machine Synthetic Minority Oversampling Technique (SVMSMOTE) to eliminate class imbalance and develop smaller representative data from big data for model training. A blending ensemble approach using hyperparameter tuned Artificial Neural Networks, Random Forests, and Support Vector Machine, is employed to reduce the uncertainty associated with a single model. The methodology provides the landslide susceptibility probability and a landslide susceptibility class. A thorough evaluation of the framework is performed using receiver operating characteristic curves, confusion matrices, and the derivatives of confusion matrices. This framework is used to develop India's first national-scale machine learning based landslide susceptibility map. The landslide database is carefully curated from global and local inventories, and the landslide conditioning factors are selected from a multitude of geophysical and climatological variables. The Indian Landslide Susceptibility Map (ILSM) is developed at a resolution of 0.001° (∼100 m) and is classified into five classes: very low, low, medium, high, and very high. We report an accuracy of 95.73 %, sensitivity of 97.08 %, and matthews correlation coefficient (MCC) of 0.915 on test data, demonstrating the accuracy, robustness, and generalizability of the framework for landslide identification. The model classified 4.75 % area in India as very highly susceptible to landslides and detected new landslide susceptible zones in the Eastern Ghats, hitherto unreported in the government landslide records. The ILSM is expected to aid policymaking in disaster risk reduction and developing landslide prediction models.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
传奇3应助学术悍匪采纳,获得10
10秒前
Orange应助Carol采纳,获得10
13秒前
16秒前
学术悍匪发布了新的文献求助10
22秒前
乐乐应助冯宇采纳,获得10
22秒前
30秒前
冯宇发布了新的文献求助10
35秒前
FU发布了新的文献求助10
54秒前
59秒前
环走鱼尾纹完成签到 ,获得积分10
1分钟前
1分钟前
yang发布了新的文献求助10
1分钟前
ZanE完成签到,获得积分10
1分钟前
NexusExplorer应助学术悍匪采纳,获得10
1分钟前
1分钟前
FU发布了新的文献求助10
2分钟前
2分钟前
学术悍匪发布了新的文献求助10
2分钟前
ning完成签到 ,获得积分10
2分钟前
无花果应助一二采纳,获得10
2分钟前
2分钟前
天天天晴完成签到 ,获得积分10
2分钟前
3分钟前
量子星尘发布了新的文献求助10
3分钟前
yang发布了新的文献求助10
3分钟前
Yulanda完成签到 ,获得积分10
3分钟前
3分钟前
Hello应助科研通管家采纳,获得10
3分钟前
在水一方应助科研通管家采纳,获得10
3分钟前
隐形曼青应助科研通管家采纳,获得10
3分钟前
Yang完成签到 ,获得积分10
3分钟前
3分钟前
FU发布了新的文献求助10
3分钟前
Carol发布了新的文献求助10
3分钟前
文艺的立果完成签到,获得积分10
3分钟前
idea完成签到 ,获得积分10
3分钟前
桃洛璟完成签到,获得积分10
3分钟前
一二完成签到,获得积分10
4分钟前
桐桐应助hhhhhh采纳,获得10
4分钟前
玛琳卡迪马完成签到,获得积分10
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
碳中和关键技术丛书--二氧化碳加氢 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5657952
求助须知:如何正确求助?哪些是违规求助? 4814931
关于积分的说明 15080683
捐赠科研通 4816245
什么是DOI,文献DOI怎么找? 2577211
邀请新用户注册赠送积分活动 1532236
关于科研通互助平台的介绍 1490814