Feature selection based on unsupervised clustering evaluation for predicting neoadjuvant chemoradiation response for patients with locally advanced rectal cancer

计算机科学 人工智能 特征选择 卷积神经网络 聚类分析 模式识别(心理学) 分类器(UML) 特征(语言学) 特征提取 深度学习 机器学习 语言学 哲学
作者
Hao Chen,Xing Li,Xiaoying Pan,Yongqian Qiang,X. Qi
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
卷期号:68 (23): 235012-235012
标识
DOI:10.1088/1361-6560/ad0d46
摘要

Accurate response prediction allows for personalized cancer treatment of locally advanced rectal cancer (LARC) with neoadjuvant chemoradiation. In this work, we designed a convolutional neural network (CNN) feature extractor with switchable 3D and 2D convolutional kernels to extract deep learning features for response prediction. Compared with radiomics features, convolutional kernels may adaptively extract local or global image features from multi-modal MR sequences without the need of feature predefinition. We then developed an unsupervised clustering based evaluation method to improve the feature selection operation in the feature space formed by the combination of CNN features and radiomics features. While normal process of feature selection generally includes the operations of classifier training and classification execution, the process needs to be repeated many times after new feature combinations were found to evaluate the model performance, which incurs a significant time cost. To address this issue, we proposed a cost effective process to use a constructed unsupervised clustering analysis indicator to replace the classifier training process by indirectly evaluating the quality of new found feature combinations in feature selection process. We evaluated the proposed method using 43 LARC patients underwent neoadjuvant chemoradiation. Our prediction model achieved accuracy, area-under-curve (AUC), sensitivity and specificity of 0.852, 0.871, 0.868, and 0.735 respectively. Compared with traditional radiomics methods, the prediction models (AUC = 0.846) based on deep learning-based feature sets are significantly better than traditional radiomics methods (AUC = 0.714). The experiments also showed following findings: (1) the features with higher predictive power are mainly from high-order abstract features extracted by CNN on ADC images and T2 images; (2) both ADC_Radiomics and ADC_CNN features are more advantageous for predicting treatment responses than the radiomics and CNN features extracted from T2 images; (3) 3D CNN features are more effective than 2D CNN features in the treatment response prediction. The proposed unsupervised clustering indicator is feasible with low computational cost, which facilitates the discovery of valuable solutions by highlighting the correlation and complementarity between different types of features.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
英俊的铭应助心灵美寻桃采纳,获得10
2秒前
2秒前
sjr发布了新的文献求助10
2秒前
爱静静应助老肥采纳,获得30
3秒前
3秒前
4秒前
4秒前
动听书雁发布了新的文献求助10
5秒前
英姑应助沙xiaohan采纳,获得10
5秒前
棉花糖完成签到,获得积分10
5秒前
yatuitui完成签到,获得积分10
5秒前
warmhelium发布了新的文献求助10
6秒前
坚定尔白完成签到,获得积分10
6秒前
猫好好发布了新的文献求助10
7秒前
大力信封完成签到,获得积分10
7秒前
昵称发布了新的文献求助10
7秒前
7秒前
7秒前
周雪峰完成签到,获得积分10
8秒前
zain完成签到 ,获得积分10
8秒前
汉堡包应助roy_chiang采纳,获得10
10秒前
科研通AI5应助Nyxia采纳,获得10
10秒前
大葱发布了新的文献求助10
11秒前
情怀应助warmhelium采纳,获得10
11秒前
真水无香123应助饱满懿轩采纳,获得10
11秒前
12秒前
orixero应助科研通管家采纳,获得10
12秒前
小二郎应助科研通管家采纳,获得10
12秒前
VDC应助科研通管家采纳,获得30
12秒前
bkagyin应助科研通管家采纳,获得10
12秒前
脑洞疼应助科研通管家采纳,获得10
12秒前
orixero应助科研通管家采纳,获得10
12秒前
JamesPei应助科研通管家采纳,获得10
12秒前
苏卿应助科研通管家采纳,获得10
12秒前
12秒前
pluto应助科研通管家采纳,获得10
12秒前
12秒前
12秒前
小蘑菇应助科研通管家采纳,获得10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 710
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3564116
求助须知:如何正确求助?哪些是违规求助? 3137325
关于积分的说明 9421827
捐赠科研通 2837701
什么是DOI,文献DOI怎么找? 1559976
邀请新用户注册赠送积分活动 729224
科研通“疑难数据库(出版商)”最低求助积分说明 717246