A Decorrelating and Debiasing Approach to Simultaneous Inference for High-Dimensional Confounded Models

借记 估计员 推论 协变量 不可见的 混淆 数学 统计 多重比较问题 计量经济学 计算机科学 人工智能 心理学 认知科学
作者
Yinrui Sun,Li Ma,Xia Yin
标识
DOI:10.1080/01621459.2023.2283938
摘要

Motivated by the simultaneous association analysis with the presence of latent confounders, this article studies the large-scale hypothesis testing problem for the high-dimensional confounded linear models with both non-asymptotic and asymptotic false discovery control. Such model covers a wide range of practical settings where both the response and the predictors may be confounded. In the presence of the high-dimensional predictors and the unobservable confounders, the simultaneous inference with provable guarantees becomes highly challenging, and the unknown strong dependence among the confounded covariates makes the challenge even more pronounced. This article first introduces a decorrelating procedure that shrinks the confounding effect and weakens the correlations among the predictors, then performs debiasing under the decorrelated design based on some biased initial estimator. Following that, an asymptotic normality result for the debiased estimator is established and standardized test statistics are then constructed. Furthermore, a simultaneous inference procedure is proposed to identify significant associations, and both the finite-sample and asymptotic false discovery bounds are provided. The non-asymptotic result is general and model-free, and is of independent interest. We also prove that, under minimal signal strength condition, all associations can be successfully detected with probability tending to one. Simulation and real data studies are carried out to evaluate the performance of the proposed approach and compare it with other competing methods. Supplementary materials for this article are available online.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
郭郭发布了新的文献求助10
1秒前
小马甲应助zzzpf采纳,获得10
2秒前
4秒前
华仔应助CXJ采纳,获得10
4秒前
wangzilu发布了新的文献求助50
4秒前
郭亮完成签到 ,获得积分20
4秒前
ghx发布了新的文献求助10
6秒前
顾矜应助ballball233采纳,获得10
6秒前
wang11完成签到,获得积分10
7秒前
初空月儿完成签到,获得积分10
7秒前
量子星尘发布了新的文献求助30
8秒前
爆米花应助管夜白采纳,获得10
8秒前
寒冷寻桃发布了新的文献求助10
9秒前
xcltzh2517完成签到,获得积分10
10秒前
10秒前
大个应助唐文硕采纳,获得10
10秒前
pig120完成签到 ,获得积分10
11秒前
lllllll完成签到,获得积分10
11秒前
星辰大海应助shiyongkang1采纳,获得20
14秒前
善学以致用应助多情如容采纳,获得10
14秒前
唐文硕完成签到,获得积分10
15秒前
qzz完成签到,获得积分10
15秒前
15秒前
15秒前
yan完成签到,获得积分10
17秒前
怜然完成签到,获得积分10
17秒前
李健的小迷弟应助仁爱嫣采纳,获得10
18秒前
19秒前
19秒前
20秒前
闪闪的鹏博完成签到,获得积分10
20秒前
21秒前
量子星尘发布了新的文献求助10
21秒前
周至发布了新的文献求助30
21秒前
乐观若烟完成签到,获得积分10
21秒前
00发布了新的文献求助10
22秒前
23秒前
Elsa完成签到,获得积分10
23秒前
yan发布了新的文献求助10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5735045
求助须知:如何正确求助?哪些是违规求助? 5358060
关于积分的说明 15328419
捐赠科研通 4879484
什么是DOI,文献DOI怎么找? 2621957
邀请新用户注册赠送积分活动 1571152
关于科研通互助平台的介绍 1527932