A rolling bearing fault diagnosis method based on a convolutional neural network with frequency attention mechanism

计算机科学 卷积神经网络 断层(地质) 人工智能 模式识别(心理学) 频道(广播) 频域 方位(导航) 机制(生物学) 特征提取 语音识别 计算机视觉 电信 哲学 地质学 认识论 地震学
作者
Hui Zhou,Runda Liu,Yaxin Li,Jiacheng Wang,Suchao Xie
出处
期刊:Structural Health Monitoring-an International Journal [SAGE]
卷期号:23 (4): 2475-2495 被引量:8
标识
DOI:10.1177/14759217231202543
摘要

A convolutional neural network fault diagnosis method based on frequency attention mechanism was designed for the problem that the traditional method cannot adaptively extract effective feature information in rolling bearing fault diagnosis and the diagnosis effect of rolling bearing is poor under strong environmental noise interference. Firs, the Mel-frequency cepstral coefficient (MFCC) of the bearing vibration signal was extracted. Second, to solve the problem of the channel attention mechanism adopting global average pooling (GAP) and neglecting channel internal characteristic information, the GAP was extended in the frequency domain, and a two-stage frequency component selection criterion was designed. The results show that the MFCC method can extract fault-sensitive features in industrial noise environments, improve the existing channel attention mechanism using frequency domain attention mechanism, and overcome the information loss caused by GAP of convolutional layer features in channel attention mechanism. Identification accuracy, recall rate, and F1-score are 100% on the rolling bearing simulation fault datasets of Case Western Reserve University and Central South University. Compared with the convolutional block attention module, the accuracy of the method combining spatial attention mechanism and channel attention mechanism is improved by 0.34 and 0.24%, respectively, and compared with other front-bearing fault diagnosis methods, it also offers significant improvement.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
微风发布了新的文献求助10
1秒前
Hello应助阳光溪流采纳,获得10
1秒前
1秒前
1秒前
2秒前
wrimer发布了新的文献求助10
2秒前
小猫出击发布了新的文献求助10
2秒前
落雪无痕发布了新的文献求助10
2秒前
2秒前
2秒前
4秒前
宇宇完成签到,获得积分20
5秒前
煦风完成签到,获得积分10
5秒前
6秒前
勤学勤积累完成签到,获得积分10
6秒前
善学以致用应助ctdd采纳,获得10
6秒前
6秒前
淡淡亦巧完成签到,获得积分10
6秒前
量子星尘发布了新的文献求助10
7秒前
ZhuHeyu完成签到,获得积分10
7秒前
桂桂发布了新的文献求助10
7秒前
未央发布了新的文献求助10
7秒前
8秒前
8秒前
ZDTT完成签到,获得积分10
9秒前
小黄巨幸运完成签到,获得积分20
9秒前
Treeone完成签到,获得积分10
9秒前
思源应助red采纳,获得10
9秒前
之华完成签到,获得积分20
9秒前
9秒前
舒服的飞丹完成签到,获得积分10
10秒前
10秒前
11秒前
canvas完成签到,获得积分10
12秒前
宇宇发布了新的文献求助10
12秒前
ctdd完成签到,获得积分20
13秒前
13秒前
测控完成签到,获得积分20
13秒前
冰苏打发布了新的文献求助10
13秒前
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
Linear and Nonlinear Functional Analysis with Applications, Second Edition 388
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5577962
求助须知:如何正确求助?哪些是违规求助? 4663005
关于积分的说明 14744036
捐赠科研通 4603644
什么是DOI,文献DOI怎么找? 2526587
邀请新用户注册赠送积分活动 1496181
关于科研通互助平台的介绍 1465642