Optimization of polydopamine coating process for poly lactic acid‐based 3D printed bone plates using machine learning approaches

响应面法 材料科学 极限抗拉强度 涂层 复合材料 抗弯强度 实验设计 粒子群优化 计算机科学 算法 机器学习 数学 统计
作者
Shrutika Sharma,Vishal Gupta,Deepa Mudgal,Vishal Srivastava
出处
期刊:Polymer Engineering and Science [Wiley]
卷期号:64 (1): 279-295 被引量:4
标识
DOI:10.1002/pen.26546
摘要

Abstract The three‐dimensional (3D) printed poly lactic acid (PLA) bone plates lack mechanical strength, resulting in premature failure. Coating these plates with polydopamine (PDM) forms covalent bonds with the PLA molecular structure, enhancing their mechanical properties. The mechanical strength of the coated bone plates is influenced by infill density, submersion time, shaker speed, and coating solution concentration. However, conducting experiments for each parameter value to achieve maximum biomechanical tensile strength (BTS) and biomechanical flexural strength (BFS) is time‐consuming and costly. Overall, the combination of response surface methodology (RSM) and machine learning (ML) enables determination of the best printing parameters, leading to reduced material waste, personalized bone plates tailored to individual anatomy, improved implant fit, and functionality. Moreover, this approach has the potential to reduce the need for additional surgeries and overall costs. To optimize coating parameters, this study employs RSM and ML techniques, including genetic algorithm (GA), particle swarm optimization (PSO), random search optimization (RSO), and differential evolution (DE). Experimental validation of the optimized process parameters and their corresponding fitness values is carried out using both RSM and ML approaches. The results demonstrate that GA has the closest relationship between experimental and fitness values, followed by DE, RSM, PSO, and RSO. Highlights Direct immersion coating of polydopamine on 3D printed PLA bone plates. Evaluating mechanical strength for bone plates coated at varying parameters. Statistical modeling and optimization of mechanical strength using RSM. Mechanical strength optimization and convergence properties for ML models. Experimental validation of RSM and ML‐based optimization algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
小叮当完成签到,获得积分10
1秒前
美好沛萍发布了新的文献求助10
2秒前
优秀不愁发布了新的文献求助10
4秒前
顾矜应助EMMA采纳,获得10
5秒前
大方的火龙果完成签到 ,获得积分10
6秒前
我是波少发布了新的文献求助10
6秒前
6秒前
脑洞疼应助doudou采纳,获得80
9秒前
candice624完成签到 ,获得积分10
9秒前
动听的夏真完成签到,获得积分20
9秒前
11秒前
爆米花应助优秀不愁采纳,获得10
13秒前
冰姗完成签到,获得积分10
16秒前
JamesPei应助彩色锦程采纳,获得10
20秒前
笨笨米卡完成签到,获得积分10
22秒前
22秒前
Hello应助美满寄松采纳,获得10
23秒前
666完成签到 ,获得积分10
24秒前
我是波少完成签到,获得积分10
25秒前
小可爱啵完成签到,获得积分10
27秒前
缥缈老九完成签到,获得积分10
28秒前
28秒前
苏木235完成签到 ,获得积分10
30秒前
shime完成签到,获得积分10
32秒前
32秒前
彩色锦程发布了新的文献求助10
32秒前
Earnestlee完成签到,获得积分10
33秒前
saker完成签到,获得积分10
33秒前
充电宝应助冷语采纳,获得10
33秒前
铜锣烧完成签到 ,获得积分10
33秒前
搜集达人应助医平青云采纳,获得10
35秒前
36秒前
岳先森完成签到,获得积分10
36秒前
36秒前
yyxhahaha完成签到,获得积分10
37秒前
jokery完成签到 ,获得积分10
37秒前
棒棒完成签到 ,获得积分10
39秒前
今天开心吗完成签到,获得积分10
39秒前
彩色锦程完成签到,获得积分20
40秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3143695
求助须知:如何正确求助?哪些是违规求助? 2795199
关于积分的说明 7813564
捐赠科研通 2451202
什么是DOI,文献DOI怎么找? 1304353
科研通“疑难数据库(出版商)”最低求助积分说明 627221
版权声明 601393