Leveraging temporal context in deep learning methodology for small object detection

目标检测 计算机科学 人工智能 计算机视觉 对象(语法) 背景(考古学) 对象类检测 深度学习 集合(抽象数据类型) 像素 Viola–Jones对象检测框架 多样性(控制论) 模式识别(心理学) 人脸检测 面部识别系统 古生物学 生物 程序设计语言
作者
Friso G. Heslinga,Frank Ruis,Luca Ballan,Martin C. van Leeuwen,Beatrice Masini,Jan Erik van Woerden,Richard J. M. den Hollander,Martin Berndsen,Jan Baan,Judith Dijk,Wyke Pereboom-Huizinga
标识
DOI:10.1117/12.2675589
摘要

Automated object detection is becoming more relevant in a wide variety of applications in the military domain. This includes the detection of drones, ships, and vehicles in video and IR video. In recent years, deep learning based object detection methods, such as YOLO, have shown to be promising in many applications for object detection. However, current methods have limited success when objects of interest are small in number of pixels, e.g. objects far away or small objects closer by. This is important, since accurate small object detection translates to early detection and the earlier an object is detected the more time is available for action. In this study, we investigate novel image analysis techniques that are designed to address some of the challenges of (very) small object detection by taking into account temporal information. We implement six methods, of which three are based on deep learning and use the temporal context of a set of frames within a video. The methods consider neighboring frames when detecting objects, either by stacking them as additional channels or by considering difference maps. We compare these spatio-temporal deep learning methods with YOLO-v8 that only considers single frames and two traditional moving object detection methods. Evaluation is done on a set of videos that encompasses a wide variety of challenges, including various objects, scenes, and acquisition conditions to show real-world performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小苹果完成签到,获得积分10
刚刚
WD完成签到 ,获得积分10
1秒前
2秒前
酷波er应助三和小神采纳,获得10
3秒前
cailiaokexue完成签到,获得积分10
4秒前
大个应助雨落采纳,获得10
4秒前
zz完成签到,获得积分10
6秒前
whq531608发布了新的文献求助30
6秒前
像心跳完成签到 ,获得积分10
7秒前
9秒前
9秒前
11秒前
12秒前
雨落完成签到,获得积分10
12秒前
enli完成签到,获得积分10
13秒前
寒冷晓凡发布了新的文献求助10
14秒前
Akim应助迷路以筠采纳,获得10
16秒前
23秒前
珊珊完成签到 ,获得积分10
26秒前
Shuai发布了新的文献求助10
27秒前
迷路以筠发布了新的文献求助10
28秒前
寒冷晓凡完成签到,获得积分10
30秒前
chenhunhun完成签到,获得积分10
31秒前
tingting完成签到,获得积分10
34秒前
隐形曼青应助冷言采纳,获得10
35秒前
35秒前
任性的梦菲完成签到,获得积分10
36秒前
香蕉觅云应助Kamelia采纳,获得10
36秒前
最好的完成签到,获得积分10
36秒前
36秒前
YAAAO发布了新的文献求助10
37秒前
落竹完成签到,获得积分10
38秒前
css1997完成签到 ,获得积分10
39秒前
zzl发布了新的文献求助10
39秒前
lin关闭了lin文献求助
41秒前
检检边lin完成签到,获得积分10
42秒前
科研小白完成签到 ,获得积分10
42秒前
科目三应助浮名半生采纳,获得10
46秒前
zzl完成签到,获得积分10
47秒前
CipherSage应助科研通管家采纳,获得10
47秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 820
England and the Discovery of America, 1481-1620 600
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3572296
求助须知:如何正确求助?哪些是违规求助? 3142501
关于积分的说明 9448015
捐赠科研通 2843973
什么是DOI,文献DOI怎么找? 1563103
邀请新用户注册赠送积分活动 731630
科研通“疑难数据库(出版商)”最低求助积分说明 718640