Modal Evaluation Network via Knowledge Distillation for No-Service Rail Surface Defect Detection

计算机科学 RGB颜色模型 人工智能 特征(语言学) 蒸馏 机器学习 特征提取 过程(计算) 数据挖掘 特征学习 一般化 模式识别(心理学) 数学 操作系统 数学分析 哲学 语言学 有机化学 化学
作者
Wujie Zhou,Jiankang Hong,Weiqing Yan,Qiuping Jiang
出处
期刊:IEEE Transactions on Circuits and Systems for Video Technology [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1 被引量:7
标识
DOI:10.1109/tcsvt.2023.3325229
摘要

Deep learning techniques have largely solved the problem of rail surface defect detection (SDD), however, two aspects have yet to be addressed. In most existing approaches, two red–green–blue and depth (RGB-D) streams are indiscriminately fused across modalities, ignoring the fact that RGB and depth images produce different feature qualities in different scenes. Additionally, in their focus on performance, previous studies have overlooked the fact that models produce several parameters, resulting in unrealistic practical applications. To address these challenges, we designed a modal evaluation network (MENet) via knowledge distillation (KD) (MENet-S*) for a no-service rail SDD to adaptively manage information in each scenario and achieve model compression. First, to dynamically adjust the feature distribution and quality, dynamic and static feature coding ideas are introduced. Second, modal evaluation distillation is introduced, which allows a compact model (MENet-S) to learn the feature evaluation process of a complex model (MENet-T). Third, to enable MENet-S to learn the dynamic encoding process of MENet-T and to improve the feature representation of MENet-S, we propose accessible knowledge distillation. Furthermore, multitiered KD is introduced to facilitate the learning of MENet-S. Based on extensive experiments using the industrial RGB-D dataset NEU RSDDS-AUG, we observed that MENet-S* (MENet-S with KD) outperformed 16 state-of-the-art methods. In addition, to demonstrate the generalization capability of MENet-S*, we evaluated the proposed network on three additional public datasets, and MENet-S* achieved competitive results. The source codes and results are available at https://github.com/hjklearn/MENet-KD.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
伶俐的血茗完成签到 ,获得积分10
刚刚
bkagyin应助明枫采纳,获得10
1秒前
1秒前
潇洒的蓝完成签到,获得积分10
1秒前
1秒前
窝瓜顶呱呱完成签到,获得积分10
1秒前
2秒前
TeaFace发布了新的文献求助10
3秒前
aniu完成签到,获得积分10
4秒前
4秒前
eva完成签到,获得积分10
4秒前
芬达完成签到 ,获得积分10
5秒前
Orange应助LeungYM采纳,获得30
5秒前
量子星尘发布了新的文献求助10
5秒前
5秒前
6秒前
6秒前
岁月如酒完成签到,获得积分10
6秒前
来自3602完成签到,获得积分10
7秒前
wwc发布了新的文献求助10
7秒前
Q1n发布了新的文献求助10
7秒前
XYS完成签到,获得积分10
8秒前
美好南晴发布了新的文献求助10
8秒前
FIF发布了新的文献求助10
8秒前
爱学习的小李完成签到 ,获得积分10
9秒前
孤独寻云发布了新的文献求助50
10秒前
11秒前
昏睡的蟠桃应助jmdz采纳,获得30
11秒前
11秒前
大力半鬼发布了新的文献求助10
11秒前
在水一方应助优雅的沛白采纳,获得10
12秒前
12秒前
量子星尘发布了新的文献求助10
12秒前
美好南晴完成签到,获得积分10
13秒前
13秒前
HM发布了新的文献求助30
13秒前
要减肥南霜完成签到 ,获得积分10
13秒前
梧桐雨210完成签到 ,获得积分10
14秒前
勤奋的冷之完成签到,获得积分10
14秒前
木通完成签到,获得积分10
14秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The Insulin Resistance Epidemic: Uncovering the Root Cause of Chronic Disease  500
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3663010
求助须知:如何正确求助?哪些是违规求助? 3223738
关于积分的说明 9753126
捐赠科研通 2933645
什么是DOI,文献DOI怎么找? 1606294
邀请新用户注册赠送积分活动 758404
科研通“疑难数据库(出版商)”最低求助积分说明 734792