Inference in High-Dimensional Multivariate Response Regression with Hidden Variables

估计员 数学 多元统计 统计 多元正态分布 推论 置信区间 应用数学 计算机科学 人工智能
作者
Xin Bing,Wei Cheng,Huijie Feng,Yang Ning
标识
DOI:10.1080/01621459.2023.2241701
摘要

AbstractThis article studies the inference of the regression coefficient matrix under multivariate response linear regressions in the presence of hidden variables. A novel procedure for constructing confidence intervals of entries of the coefficient matrix is proposed. Our method first uses the multivariate nature of the responses by estimating and adjusting the hidden effect to construct an initial estimator of the coefficient matrix. By further deploying a low-dimensional projection procedure to reduce the bias introduced by the regularization in the previous step, a refined estimator is proposed and shown to be asymptotically normal. The asymptotic variance of the resulting estimator is derived with closed-form expression and can be consistently estimated. In addition, we propose a testing procedure for the existence of hidden effects and provide its theoretical justification. Both our procedures and their analyses are valid even when the feature dimension and the number of responses exceed the sample size. Our results are further backed up via extensive simulations and a real data analysis. Supplementary materials for this article are available online.KEYWORDS: Confidence intervalsConfoundingHidden variablesHigh-dimensional regressionHypothesis testingMultivariate response regressionSurrogate variable analysis Supplementary MaterialsThe supplement contains the rate of maxj‖XF̂j−XFj‖2, the statement of asymptotic normality of multiple components of Θ˜−Θ and all the proofs.AcknowledgmentsThe authors would like to thank the Associate Editor and two reviewers for their insightful comments which have improved the manuscript substantially.Disclosure StatementThe authors report there are no competing interests to declare.Notes1 A centered random vector X∈Rd is γ sub-Gaussian if E[exp (〈u,X〉)]≤ exp (‖u‖22γ2/2) for any u∈Rd.2 If DK is not invertible, we use its Moore-Penrose inverse instead.3 Since Guo, Ćevid, and Bühlmann (Citation2020) only provides guarantees of DDL for large p, we compare with DDL in the high-dimensional scenarios. Also due to the long running time of DDL, we only report its results for m=20 and p = 500.Additional informationFundingNing was supported by the NSF grant CAREER Award DMS-1941945 and DMS-2311291, and NIH 1RF1AG077820-01A1. Bing was partially supported by a discovery grant from the Natural Sciences and Engineering Research Council of Canada.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
鸭梨山大完成签到,获得积分10
刚刚
1秒前
xmm发布了新的文献求助10
1秒前
2秒前
2秒前
2秒前
2秒前
4秒前
4秒前
tang完成签到 ,获得积分10
4秒前
4秒前
风中的飞扬完成签到,获得积分10
5秒前
LIM发布了新的文献求助10
6秒前
li完成签到,获得积分10
6秒前
tang发布了新的文献求助10
7秒前
wzx发布了新的文献求助10
8秒前
黑咖啡完成签到,获得积分10
8秒前
超帅蓝血发布了新的文献求助30
8秒前
zzz发布了新的文献求助10
10秒前
故意的自行车完成签到,获得积分20
10秒前
lonf完成签到,获得积分10
11秒前
整齐的豪英完成签到,获得积分10
11秒前
田様应助路哈哈采纳,获得10
13秒前
大模型应助胖墩儿驾到采纳,获得30
14秒前
15秒前
16秒前
ximo完成签到,获得积分10
16秒前
16秒前
sherry完成签到,获得积分10
17秒前
17秒前
小醒发布了新的文献求助10
17秒前
Rondab应助科研通管家采纳,获得10
17秒前
NexusExplorer应助科研通管家采纳,获得10
17秒前
顾矜应助科研通管家采纳,获得10
17秒前
斯文明杰发布了新的文献求助10
17秒前
大个应助科研通管家采纳,获得10
17秒前
科目三应助科研通管家采纳,获得30
17秒前
香蕉觅云应助科研通管家采纳,获得10
17秒前
小二郎应助科研通管家采纳,获得10
17秒前
英俊的铭应助科研通管家采纳,获得10
17秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3958968
求助须知:如何正确求助?哪些是违规求助? 3505216
关于积分的说明 11123184
捐赠科研通 3236828
什么是DOI,文献DOI怎么找? 1788949
邀请新用户注册赠送积分活动 871455
科研通“疑难数据库(出版商)”最低求助积分说明 802794