清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Inference in High-Dimensional Multivariate Response Regression with Hidden Variables

估计员 数学 多元统计 统计 多元正态分布 推论 置信区间 应用数学 计算机科学 人工智能
作者
Xin Bing,Wei Cheng,Huijie Feng,Yang Ning
标识
DOI:10.1080/01621459.2023.2241701
摘要

AbstractThis article studies the inference of the regression coefficient matrix under multivariate response linear regressions in the presence of hidden variables. A novel procedure for constructing confidence intervals of entries of the coefficient matrix is proposed. Our method first uses the multivariate nature of the responses by estimating and adjusting the hidden effect to construct an initial estimator of the coefficient matrix. By further deploying a low-dimensional projection procedure to reduce the bias introduced by the regularization in the previous step, a refined estimator is proposed and shown to be asymptotically normal. The asymptotic variance of the resulting estimator is derived with closed-form expression and can be consistently estimated. In addition, we propose a testing procedure for the existence of hidden effects and provide its theoretical justification. Both our procedures and their analyses are valid even when the feature dimension and the number of responses exceed the sample size. Our results are further backed up via extensive simulations and a real data analysis. Supplementary materials for this article are available online.KEYWORDS: Confidence intervalsConfoundingHidden variablesHigh-dimensional regressionHypothesis testingMultivariate response regressionSurrogate variable analysis Supplementary MaterialsThe supplement contains the rate of maxj‖XF̂j−XFj‖2, the statement of asymptotic normality of multiple components of Θ˜−Θ and all the proofs.AcknowledgmentsThe authors would like to thank the Associate Editor and two reviewers for their insightful comments which have improved the manuscript substantially.Disclosure StatementThe authors report there are no competing interests to declare.Notes1 A centered random vector X∈Rd is γ sub-Gaussian if E[exp (〈u,X〉)]≤ exp (‖u‖22γ2/2) for any u∈Rd.2 If DK is not invertible, we use its Moore-Penrose inverse instead.3 Since Guo, Ćevid, and Bühlmann (Citation2020) only provides guarantees of DDL for large p, we compare with DDL in the high-dimensional scenarios. Also due to the long running time of DDL, we only report its results for m=20 and p = 500.Additional informationFundingNing was supported by the NSF grant CAREER Award DMS-1941945 and DMS-2311291, and NIH 1RF1AG077820-01A1. Bing was partially supported by a discovery grant from the Natural Sciences and Engineering Research Council of Canada.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英喆完成签到 ,获得积分10
6秒前
11秒前
jiyuanqi发布了新的文献求助10
15秒前
文艺的初南完成签到 ,获得积分10
1分钟前
席康完成签到 ,获得积分10
1分钟前
爆米花应助科研通管家采纳,获得10
1分钟前
wy发布了新的文献求助10
2分钟前
狮子座完成签到 ,获得积分10
2分钟前
vitamin完成签到 ,获得积分10
2分钟前
CipherSage应助wy采纳,获得10
2分钟前
高海龙完成签到 ,获得积分10
3分钟前
JamesPei应助枯藤老柳树采纳,获得10
3分钟前
古炮完成签到 ,获得积分10
3分钟前
田田完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
凡人丿完成签到,获得积分10
4分钟前
一分发布了新的文献求助50
4分钟前
席江海完成签到,获得积分10
5分钟前
房天川完成签到 ,获得积分10
5分钟前
wangye完成签到 ,获得积分10
5分钟前
6分钟前
Amadeus发布了新的文献求助10
6分钟前
Amadeus完成签到,获得积分10
6分钟前
实力不允许完成签到 ,获得积分10
6分钟前
7分钟前
ww完成签到,获得积分10
7分钟前
波里舞完成签到 ,获得积分10
8分钟前
8分钟前
郑先生完成签到 ,获得积分10
8分钟前
科研通AI2S应助lilili采纳,获得10
8分钟前
刘刘完成签到 ,获得积分10
8分钟前
lilili发布了新的文献求助10
9分钟前
9分钟前
今天又来搬砖啦完成签到,获得积分10
11分钟前
川藏客完成签到 ,获得积分10
11分钟前
11分钟前
11分钟前
蔡俊辉发布了新的文献求助10
11分钟前
12分钟前
高分求助中
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
宽禁带半导体紫外光电探测器 388
Case Research: The Case Writing Process 300
Global Geological Record of Lake Basins 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3142823
求助须知:如何正确求助?哪些是违规求助? 2793651
关于积分的说明 7807147
捐赠科研通 2449971
什么是DOI,文献DOI怎么找? 1303563
科研通“疑难数据库(出版商)”最低求助积分说明 627016
版权声明 601350