Inference in High-Dimensional Multivariate Response Regression with Hidden Variables

估计员 数学 多元统计 统计 多元正态分布 推论 置信区间 应用数学 计算机科学 人工智能
作者
Xin Bing,Wei Cheng,Huijie Feng,Yang Ning
标识
DOI:10.1080/01621459.2023.2241701
摘要

AbstractThis article studies the inference of the regression coefficient matrix under multivariate response linear regressions in the presence of hidden variables. A novel procedure for constructing confidence intervals of entries of the coefficient matrix is proposed. Our method first uses the multivariate nature of the responses by estimating and adjusting the hidden effect to construct an initial estimator of the coefficient matrix. By further deploying a low-dimensional projection procedure to reduce the bias introduced by the regularization in the previous step, a refined estimator is proposed and shown to be asymptotically normal. The asymptotic variance of the resulting estimator is derived with closed-form expression and can be consistently estimated. In addition, we propose a testing procedure for the existence of hidden effects and provide its theoretical justification. Both our procedures and their analyses are valid even when the feature dimension and the number of responses exceed the sample size. Our results are further backed up via extensive simulations and a real data analysis. Supplementary materials for this article are available online.KEYWORDS: Confidence intervalsConfoundingHidden variablesHigh-dimensional regressionHypothesis testingMultivariate response regressionSurrogate variable analysis Supplementary MaterialsThe supplement contains the rate of maxj‖XF̂j−XFj‖2, the statement of asymptotic normality of multiple components of Θ˜−Θ and all the proofs.AcknowledgmentsThe authors would like to thank the Associate Editor and two reviewers for their insightful comments which have improved the manuscript substantially.Disclosure StatementThe authors report there are no competing interests to declare.Notes1 A centered random vector X∈Rd is γ sub-Gaussian if E[exp (〈u,X〉)]≤ exp (‖u‖22γ2/2) for any u∈Rd.2 If DK is not invertible, we use its Moore-Penrose inverse instead.3 Since Guo, Ćevid, and Bühlmann (Citation2020) only provides guarantees of DDL for large p, we compare with DDL in the high-dimensional scenarios. Also due to the long running time of DDL, we only report its results for m=20 and p = 500.Additional informationFundingNing was supported by the NSF grant CAREER Award DMS-1941945 and DMS-2311291, and NIH 1RF1AG077820-01A1. Bing was partially supported by a discovery grant from the Natural Sciences and Engineering Research Council of Canada.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
传奇3应助高大厉采纳,获得30
1秒前
科隆龙完成签到,获得积分10
1秒前
marker_发布了新的文献求助10
1秒前
刘哈哈完成签到,获得积分10
1秒前
坦率灵槐完成签到,获得积分10
1秒前
1秒前
糖糖完成签到,获得积分10
1秒前
月亮代表我的心完成签到,获得积分10
1秒前
xxx发布了新的文献求助10
1秒前
2秒前
科研通AI6应助Adaring采纳,获得10
2秒前
niniyiya完成签到,获得积分10
2秒前
丘比特应助穆头呼橹橹采纳,获得10
2秒前
2秒前
halabouqii发布了新的文献求助10
2秒前
yuzhouhaohan发布了新的文献求助10
3秒前
孙温柔完成签到,获得积分10
4秒前
科研通AI6应助任性的咖啡采纳,获得10
4秒前
自愈合完成签到,获得积分10
4秒前
zzz完成签到,获得积分10
5秒前
ttt发布了新的文献求助30
6秒前
6秒前
哈哈哈哈哈哈12306完成签到,获得积分10
6秒前
6秒前
7秒前
7秒前
gao发布了新的文献求助10
8秒前
8秒前
戴玉梅完成签到,获得积分10
9秒前
YYY完成签到 ,获得积分10
10秒前
三年两篇以上SCI完成签到 ,获得积分10
10秒前
上官若男应助vv采纳,获得20
11秒前
djh发布了新的文献求助10
11秒前
11秒前
诸葛朝雪发布了新的文献求助10
12秒前
lq完成签到 ,获得积分10
13秒前
虞头星星发布了新的文献求助10
13秒前
13秒前
bkagyin应助赵伟豪采纳,获得10
14秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Reliability Monitoring Program 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5340559
求助须知:如何正确求助?哪些是违规求助? 4476999
关于积分的说明 13933590
捐赠科研通 4372846
什么是DOI,文献DOI怎么找? 2402602
邀请新用户注册赠送积分活动 1395511
关于科研通互助平台的介绍 1367572