Hippopotamus Optimization Algorithm: A Novel Nature-Inspired Optimization Algorithm

算法 水准点(测量) 进化算法 测试套件 计算机科学 元启发式 数学优化 数学 测试用例 人工智能 机器学习 地理 大地测量学 回归分析
作者
Mohammad Hussein Amiri,Nastaran Mehrabi Hashjin,Mohsen Montazeri,Seyedali Mirjalili,Nima Khodadadi
出处
期刊:Research Square - Research Square 被引量:3
标识
DOI:10.21203/rs.3.rs-3503110/v1
摘要

Abstract The novelty of this article lies in introducing a novel nonparametric metaheuristic technique named the Hippopotamus Optimization (HO) algorithm. The HO is conceived by drawing inspiration from the inherent behaviors observed in hippopotamuses, showcasing an innovative approach in metaheuristic methodology. The HO is conceptually defined using a trinary-phase model that incorporates their position updating in rivers or ponds, defensive strategies against predators, and evasion methods, which are mathematically formulated. It attained the top rank in 132 out of 161 benchmark functions in finding optimal value, encompassing unimodal and high-dimensional multimodal functions, fixed-dimensional multimodal functions, as well as the CEC 2019 test suite and CEC 2014 test suite dimensions of 10, 30, 50, and 100 and Zigzag Pattern benchmark functions, this suggests that the HO demonstrates a noteworthy proficiency in both local search and exploitation, as well as in global search and exploration. Moreover, it effectively balances exploration and exploitation, supporting the search process. The performance of the HO consistently surpassed that of the top 3 algorithms in achieving optimal value, except for 29 functions. However, although it did not exhibit strong convergence in these 29 functions, the standard deviation for them was lower than the other investigated algorithms, illustrating its ability to manage the functions effectively. In light of the results from addressing four distinct engineering design challenges, the HO has effectively achieved the most efficient resolution while concurrently upholding adherence to the designated constraints. The Wilcoxon signed test demonstrates that HO exhibits a notable and statistically significant advantage over the investigated algorithms in effectively addressing the optimization problems examined in this study.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
鹿不羁完成签到 ,获得积分10
4秒前
重要无极完成签到,获得积分0
4秒前
Hancock完成签到 ,获得积分10
5秒前
5秒前
5秒前
九秋霜完成签到,获得积分10
7秒前
wgcheng发布了新的文献求助10
7秒前
8秒前
合适妙海发布了新的文献求助10
8秒前
兴奋代柔完成签到 ,获得积分10
9秒前
怡然新梅发布了新的文献求助10
9秒前
Orange应助苹果小八采纳,获得10
9秒前
CipherSage应助服部平次采纳,获得10
11秒前
Annie完成签到 ,获得积分10
12秒前
活泼啤酒完成签到 ,获得积分10
14秒前
14秒前
茗姜完成签到,获得积分10
15秒前
16秒前
一只大憨憨猫完成签到,获得积分10
16秒前
17秒前
所所应助星星采纳,获得10
17秒前
17秒前
答辩完成签到,获得积分10
18秒前
18秒前
20秒前
20秒前
20秒前
Yippee完成签到 ,获得积分10
21秒前
123456777完成签到 ,获得积分10
21秒前
21秒前
timo完成签到,获得积分10
21秒前
浩浩浩完成签到,获得积分10
22秒前
張肉肉关注了科研通微信公众号
22秒前
额E完成签到,获得积分20
23秒前
23秒前
坐井观天的蛙完成签到 ,获得积分10
23秒前
23秒前
云海完成签到,获得积分10
23秒前
24秒前
高分求助中
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
Die Gottesanbeterin: Mantis religiosa: 656 400
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3165183
求助须知:如何正确求助?哪些是违规求助? 2816164
关于积分的说明 7911772
捐赠科研通 2475878
什么是DOI,文献DOI怎么找? 1318401
科研通“疑难数据库(出版商)”最低求助积分说明 632143
版权声明 602388