已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Generating 60–100 m, hourly, all-weather land surface temperatures based on the Landsat, ECOSTRESS, and reanalysis temperature combination (LERC)

环境科学 日循环 卫星 时间分辨率 气象学 数据同化 均方误差 比例(比率) 遥感 时间尺度 气候学 地理 地图学 地质学 统计 数学 量子力学 生物 物理 工程类 航空航天工程 生态学
作者
Jinling Quan,Yawen Guan,Falu Hong,Ting Ma,Dandan Wang,Zheng Guo
出处
期刊:Isprs Journal of Photogrammetry and Remote Sensing 卷期号:205: 115-134
标识
DOI:10.1016/j.isprsjprs.2023.10.004
摘要

Satellite-derived land surface temperatures (LSTs) often encounter a tradeoff between spatial and temporal resolutions, as well as severe cloud contamination. While extensive efforts have focused on resolution enhancement and under-cloud reconstruction, generating fine-resolution (≤100 m) diurnal LSTs under all-weather conditions remains a challenge, which hampers fine-scale monitoring of climatological, hydrological, and ecological processes. The latest 70-m ECOSTRESS observations at varying times of day provide an unprecedented opportunity for detailed mapping of diurnal LST dynamics, and reanalysis products with spatiotemporal continuity offer promising references for all-weather thermal dynamics. However, these advantages have rarely been integrated to concurrently achieve high spatiotemporal resolution and completeness. Here, we present a simple yet effective framework for reconstructing 60–100 m, hourly, all-weather LSTs based on the Landsat, ECOSTRESS and Reanalysis temperature Combination (termed LERC). The framework involves three steps: (i) preliminary under-cloud estimations within annual cycles of several times by fitting an enhanced annual temperature cycle (EATC) model to clear Landsat/ECOSTRESS scenes and China Land Data Assimilation System (CLDAS) LST fluctuations; (ii) optimized daily estimations at each selected time by correcting biases of the preliminary under-cloud estimations and re-modeling the EATC with temporally densified samples; and (iii) hourly seamless estimations by interpolating the two nearest daily estimations with reference to the weighted diurnal changes in CLDAS. LERC was evaluated in an urban-dominated region throughout 2020, resulting in an average root-mean-squared-error of 2.0 K (3.0 K) against 50 Landsat and ECOSTRESS images (hourly ground measurements at 13 sites). Compared to the enhanced spatial and temporal adaptive reflectance fusion model, classic ATC model, diurnal temperature cycle model, and three sophisticated all-weather products, LERC demonstrates outperformance in terms of general accuracy, spatiotemporal variability, and robustness against sparse input. LERC has great potentials for generating long-term reliable all-weather LST records with a high spatiotemporal resolution to promote broad applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
jiaqi发布了新的文献求助30
1秒前
852应助笨笨小熊猫采纳,获得10
1秒前
2秒前
2秒前
壮观梦易发布了新的文献求助10
2秒前
3秒前
4秒前
55完成签到 ,获得积分10
5秒前
强无敌发布了新的文献求助10
6秒前
漂亮的鸡发布了新的文献求助10
7秒前
7秒前
我我我发布了新的文献求助10
8秒前
周凡淇发布了新的文献求助10
8秒前
8秒前
mynuongga完成签到,获得积分10
8秒前
喂_你好发布了新的文献求助10
9秒前
行走家完成签到,获得积分10
11秒前
人类后腿发布了新的文献求助20
11秒前
子阅完成签到 ,获得积分10
12秒前
12秒前
华仔应助风中的糖豆采纳,获得10
16秒前
花椒鱼完成签到 ,获得积分10
18秒前
英姑应助jiaqi采纳,获得10
18秒前
isonomia发布了新的文献求助200
19秒前
我我我完成签到,获得积分20
20秒前
22秒前
喂_你好完成签到,获得积分10
22秒前
kk完成签到,获得积分10
23秒前
呼呼兔完成签到,获得积分10
23秒前
24秒前
ghroth发布了新的文献求助10
25秒前
羽羽完成签到 ,获得积分10
25秒前
CipherSage应助科研通管家采纳,获得10
26秒前
小蘑菇应助科研通管家采纳,获得10
26秒前
wl完成签到,获得积分10
28秒前
bkagyin应助orange采纳,获得10
28秒前
俏皮小松鼠完成签到,获得积分20
31秒前
33秒前
33秒前
李爱国应助zzz采纳,获得10
33秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1200
BIOLOGY OF NON-CHORDATES 1000
进口的时尚——14世纪东方丝绸与意大利艺术 Imported Fashion:Oriental Silks and Italian Arts in the 14th Century 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 550
Education and Upward Social Mobility in China: Imagining Positive Sociology with Bourdieu 500
Zeitschrift für Orient-Archäologie 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3353363
求助须知:如何正确求助?哪些是违规求助? 2977981
关于积分的说明 8683154
捐赠科研通 2659256
什么是DOI,文献DOI怎么找? 1456109
科研通“疑难数据库(出版商)”最低求助积分说明 674278
邀请新用户注册赠送积分活动 664978