Relative importance of speech and voice features in the classification of schizophrenia and depression

重性抑郁障碍 精神分裂症(面向对象编程) 支持向量机 心理学 特征(语言学) 衔接(社会学) 听力学 神经质的 二元分类 语音识别 模式识别(心理学) 自闭症谱系障碍 人工智能 医学 精神科 认知心理学 心情 计算机科学 语言学 哲学 自闭症 政治 政治学 法学
作者
Mark L. Berardi,Katharina Brosch,Julia‐Katharina Pfarr,Katharina Schneider,Angela Sültmann,Florian Thomas‐Odenthal,Adrian Wroblewski,Paula Usemann,Alexandra Philipsen,Udo Dannlowski,Igor Nenadić,Tilo Kircher,Axel Krug,Frederike Stein,Maria Dietrich
出处
期刊:Translational Psychiatry [Springer Nature]
卷期号:13 (1) 被引量:10
标识
DOI:10.1038/s41398-023-02594-0
摘要

Speech is a promising biomarker for schizophrenia spectrum disorder (SSD) and major depressive disorder (MDD). This proof of principle study investigates previously studied speech acoustics in combination with a novel application of voice pathology features as objective and reproducible classifiers for depression, schizophrenia, and healthy controls (HC). Speech and voice features for classification were calculated from recordings of picture descriptions from 240 speech samples (20 participants with SSD, 20 with MDD, and 20 HC each with 4 samples). Binary classification support vector machine (SVM) models classified the disorder groups and HC. For each feature, the permutation feature importance was calculated, and the top 25% most important features were used to compare differences between the disorder groups and HC including correlations between the important features and symptom severity scores. Multiple kernels for SVM were tested and the pairwise models with the best performing kernel (3-degree polynomial) were highly accurate for each classification: 0.947 for HC vs. SSD, 0.920 for HC vs. MDD, and 0.932 for SSD vs. MDD. The relatively most important features were measures of articulation coordination, number of pauses per minute, and speech variability. There were moderate correlations between important features and positive symptoms for SSD. The important features suggest that speech characteristics relating to psychomotor slowing, alogia, and flat affect differ between HC, SSD, and MDD.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
cdercder应助开放笑天采纳,获得30
刚刚
neinei完成签到,获得积分10
1秒前
2秒前
十三应助科研通管家采纳,获得30
2秒前
2秒前
科研通AI5应助科研通管家采纳,获得10
2秒前
cdercder应助科研通管家采纳,获得10
2秒前
阔达以山应助科研通管家采纳,获得10
2秒前
2秒前
科研通AI2S应助科研通管家采纳,获得10
2秒前
cdercder应助科研通管家采纳,获得30
3秒前
丘比特应助科研通管家采纳,获得10
3秒前
无花果应助科研通管家采纳,获得10
3秒前
4秒前
Tacamily完成签到,获得积分10
7秒前
东东呀完成签到,获得积分10
8秒前
鼻揩了转去应助学海无涯采纳,获得10
8秒前
ztt完成签到,获得积分10
8秒前
呱呱呱发布了新的文献求助10
9秒前
冰海完成签到 ,获得积分10
9秒前
yyyy完成签到,获得积分10
10秒前
DY完成签到,获得积分10
11秒前
Yvonne完成签到,获得积分10
12秒前
12秒前
邱航完成签到,获得积分10
15秒前
小张完成签到,获得积分10
16秒前
呱呱呱完成签到,获得积分10
16秒前
小龙虾完成签到,获得积分10
17秒前
木光完成签到,获得积分10
17秒前
海意完成签到,获得积分10
17秒前
学必困完成签到 ,获得积分10
20秒前
EOFG0PW完成签到,获得积分10
22秒前
勤劳元瑶完成签到,获得积分10
22秒前
zhanghan完成签到,获得积分10
24秒前
dmcyer发布了新的文献求助50
25秒前
蓝天碧海小西服完成签到,获得积分0
26秒前
无糖零脂完成签到,获得积分10
26秒前
big佳完成签到,获得积分10
29秒前
Ha完成签到,获得积分10
30秒前
正直的语蝶完成签到,获得积分20
30秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3736779
求助须知:如何正确求助?哪些是违规求助? 3280670
关于积分的说明 10020421
捐赠科研通 2997407
什么是DOI,文献DOI怎么找? 1644533
邀请新用户注册赠送积分活动 782083
科研通“疑难数据库(出版商)”最低求助积分说明 749656