AI in Medicine—JAMA’s Focus on Clinical Outcomes, Patient-Centered Care, Quality, and Equity

医学 医疗保健 衡平法 公共卫生 转化式学习 卫生技术 公共关系 工程伦理学 护理部 心理学 政治学 法学 教育学 工程类
作者
Rohan Khera,Atul J. Butte,Michael Berkwits,Yulin Hswen,Annette Flanagin,Hannah Park,Gregory Curfman,Kirsten Bibbins‐Domingo
出处
期刊:JAMA [American Medical Association]
卷期号:330 (9): 818-818 被引量:24
标识
DOI:10.1001/jama.2023.15481
摘要

The transformative role of artificial intelligence (AI) in health care has been forecast for decades, 1 but only recently have technological advances appeared to capture some of the complexity of health and disease and how health care is delivered. 2ecent emergence of large language models (LLMs) in highly visible and interactive applications 3 has ignited interest in how new AI technologies can improve medicine and health for patients, the public, clinicians, health systems, and more.The rapidity of these developments, their potential impact on health care, and JAMA's mission to publish the best science that advances medicine and public health compel the journal to renew its commitment to facilitating the rigorous scientific development, evaluation, and implementation of AI in health care.JAMA editors are committed to promoting discoveries in AI science, rigorously evaluating new advances for their impact on the health of patients and populations, assessing the value such advances bring to health systems and society nationally and globally, and examining progress toward equity, fairness, and the reduction of historical medical bias.Moreover, JAMA's mission is to ensure that these scientific advances are clearly communicated in a manner that enhances the collective understanding of the domain for all stakeholders in medicine and public health. 4For scientific development of AI to be most effective for improving medicine and public health requires a platform that recognizes and supports the vision of rapid cycle innovation and is also fundamentally grounded in the principles of reliable and reproducible clinical research that is ethically sound, respectful of rights to privacy, and representative of diverse populations. 2,3,5he scientific development in AI can be viewed through the framework used to describe other health-related sciences. 6n these domains, scientific discoveries begin with identifying biological mechanisms of disease.Then inventions that target these mechanisms are tested in progressively larger groups of people with and without diseases to assess the effectiveness and safety of these interventions.These are then scaled to large studies evaluating outcomes for individuals and populations with the disease.This well-established scientific development framework can work for research in AI as well, with reportable stages as inventions and findings move from one stage to the next.The editors seek original science that focuses on developing, testing, and deploying AI in studies that improve under-
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
田様应助栀子采纳,获得10
1秒前
2秒前
2秒前
4秒前
李爱国应助呆萌棒棒糖采纳,获得10
4秒前
4秒前
JIE发布了新的文献求助10
4秒前
细心灭龙发布了新的文献求助30
5秒前
望其项背发布了新的文献求助10
6秒前
6秒前
jz发布了新的文献求助10
7秒前
ColdSpring发布了新的文献求助10
8秒前
科研通AI5应助满意的伊采纳,获得10
9秒前
科研通AI5应助满意的伊采纳,获得10
9秒前
一一应助满意的伊采纳,获得10
9秒前
无花果应助满意的伊采纳,获得100
9秒前
10秒前
Ava应助大地上的鱼采纳,获得30
10秒前
烤肉酱酱酱完成签到,获得积分20
11秒前
11秒前
12秒前
月涵完成签到 ,获得积分10
12秒前
镜哥完成签到,获得积分10
12秒前
自然母鸡发布了新的文献求助10
12秒前
JIE完成签到,获得积分10
14秒前
ColdSpring完成签到,获得积分10
15秒前
寒涛先生发布了新的文献求助10
15秒前
18秒前
愚夫发布了新的文献求助10
19秒前
酷波er应助槑塞呆呆采纳,获得10
20秒前
小鲸鱼发布了新的文献求助10
22秒前
啊标完成签到,获得积分10
22秒前
23秒前
23秒前
24秒前
24秒前
zj完成签到 ,获得积分10
25秒前
27秒前
大侠发布了新的文献求助10
28秒前
小瞎子_Zora应助细心灭龙采纳,获得10
29秒前
高分求助中
IZELTABART TAPATANSINE 500
Where and how to use plate heat exchangers 500
Seven new species of the Palaearctic Lauxaniidae and Asteiidae (Diptera) 400
Armour of the english knight 1400-1450 300
Handbook of Laboratory Animal Science 300
Not Equal : Towards an International Law of Finance 260
Beginners Guide To Clinical Medicine (Pb 2020): A Systematic Guide To Clinical Medicine, Two-Vol Set 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3711618
求助须知:如何正确求助?哪些是违规求助? 3260058
关于积分的说明 9912395
捐赠科研通 2973456
什么是DOI,文献DOI怎么找? 1630574
邀请新用户注册赠送积分活动 773468
科研通“疑难数据库(出版商)”最低求助积分说明 744274