纳米复合材料
材料科学
煅烧
热分解
X射线光电子能谱
超顺磁性
壳体(结构)
化学工程
纳米颗粒
水溶液
纳米技术
复合材料
化学
磁化
物理化学
催化作用
磁场
物理
工程类
量子力学
生物化学
有机化学
作者
Kumkum Gangwar,P. Jeevanandam
标识
DOI:10.1002/slct.202301839
摘要
Abstract In the current study, a thermal decomposition approach has been used to synthesize Fe 2 O 3 @SnO 2 core‐shell nanocomposites in which Fe 2 O 3 microsphere is the core and SnO 2 is the shell. The thickness of shell (SnO 2 ) is altered by varying amount of tin chloride pentahydrate (precursor of SnO 2 ). Various characterization techniques were used to prove successful formation of Fe 2 O 3 @SnO 2 core‐shell nanocomposites. XRD results confirm the presence of SnO 2 , α‐Fe 2 O 3, and Fe 3 O 4 in the calcined Fe 2 O 3 @SnO 2 core‐shell nanocomposites. FE‐SEM and TEM studies reveal uniform deposition of SnO 2 nanoparticles over the iron oxide microspheres. XPS analysis demonstrates the presence of Sn 4+ , Fe 2+ , Fe 3+ , and O 2− in the Fe 2 O 3 @SnO 2 core‐shell nanocomposites. Optical studies show that the Fe 2 O 3 @SnO 2 core‐shell nanocomposites absorb in UV and visible regions. M−H studies on Fe 2 O 3 @SnO 2 core‐shell nanocomposites indicate weak ferromagnetic and superparamagnetic behaviour of the nanocomposites at 5 K and 300 K, respectively. From M−T measurements, pure α‐Fe 2 O 3 shows characteristic Morin transition (T m ), but the Fe 2 O 3 @SnO 2 core‐shell nanocomposites do not show such transition. The Fe 2 O 3 @SnO 2 core‐shell nanocomposites were explored as adsorbent for the removal of congo red (CR) from an aqueous solution.
科研通智能强力驱动
Strongly Powered by AbleSci AI